Kalkylator för bestämda och oegentliga integraler

Beräkna bestämda och oegentliga integraler steg för steg

Kalkylatorn försöker beräkna bestämda integraler (dvs. med integrationsgränser), inklusive oegentliga, och visar stegen.

Enter a function:

Integrate with respect to:

Enter a lower limit:

If you need `-oo`, type -inf.

Enter an upper limit:

If you need `oo`, type inf.

Please write without any differentials such as `dx`, `dy` etc.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: calculate $$$\int_{0}^{\pi}\left( x \sin{\left(x \right)} \right)dx$$$

First, calculate the corresponding indefinite integral: $$$\int{x \sin{\left(x \right)} d x}=- x \cos{\left(x \right)} + \sin{\left(x \right)}$$$ (for steps, see indefinite integral calculator)

According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.

$$$\left(- x \cos{\left(x \right)} + \sin{\left(x \right)}\right)|_{\left(x=\pi\right)}=\pi$$$

$$$\left(- x \cos{\left(x \right)} + \sin{\left(x \right)}\right)|_{\left(x=0\right)}=0$$$

$$$\int_{0}^{\pi}\left( x \sin{\left(x \right)} \right)dx=\left(- x \cos{\left(x \right)} + \sin{\left(x \right)}\right)|_{\left(x=\pi\right)}-\left(- x \cos{\left(x \right)} + \sin{\left(x \right)}\right)|_{\left(x=0\right)}=\pi$$$

Answer: $$$\int_{0}^{\pi}\left( x \sin{\left(x \right)} \right)dx=\pi\approx 3.14159265358979$$$


Please try a new game Rotatly