Kalkylator för bestämda och oegentliga integraler
Beräkna bestämda och oegentliga integraler steg för steg
Kalkylatorn försöker beräkna bestämda integraler (dvs. med integrationsgränser), inklusive oegentliga, och visar stegen.
Solution
Your input: calculate $$$\int_{0}^{\frac{\pi}{2}}\left( \frac{x \sin{\left(3 \right)}}{2} \right)dx$$$
First, calculate the corresponding indefinite integral: $$$\int{\frac{x \sin{\left(3 \right)}}{2} d x}=\frac{x^{2} \sin{\left(3 \right)}}{4}$$$ (for steps, see indefinite integral calculator)
According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.
$$$\left(\frac{x^{2} \sin{\left(3 \right)}}{4}\right)|_{\left(x=\frac{\pi}{2}\right)}=\frac{\pi^{2} \sin{\left(3 \right)}}{16}$$$
$$$\left(\frac{x^{2} \sin{\left(3 \right)}}{4}\right)|_{\left(x=0\right)}=0$$$
$$$\int_{0}^{\frac{\pi}{2}}\left( \frac{x \sin{\left(3 \right)}}{2} \right)dx=\left(\frac{x^{2} \sin{\left(3 \right)}}{4}\right)|_{\left(x=\frac{\pi}{2}\right)}-\left(\frac{x^{2} \sin{\left(3 \right)}}{4}\right)|_{\left(x=0\right)}=\frac{\pi^{2} \sin{\left(3 \right)}}{16}$$$
Answer: $$$\int_{0}^{\frac{\pi}{2}}\left( \frac{x \sin{\left(3 \right)}}{2} \right)dx=\frac{\pi^{2} \sin{\left(3 \right)}}{16}\approx 0.0870499157893395$$$