Kalkylator för bestämda och oegentliga integraler
Beräkna bestämda och oegentliga integraler steg för steg
Kalkylatorn försöker beräkna bestämda integraler (dvs. med integrationsgränser), inklusive oegentliga, och visar stegen.
Solution
Your input: calculate $$$\int_{0}^{\frac{\pi}{2}}\left( \sin{\left(2 x \right)} \right)dx$$$
First, calculate the corresponding indefinite integral: $$$\int{\sin{\left(2 x \right)} d x}=- \frac{\cos{\left(2 x \right)}}{2}$$$ (for steps, see indefinite integral calculator)
According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.
$$$\left(- \frac{\cos{\left(2 x \right)}}{2}\right)|_{\left(x=\frac{\pi}{2}\right)}=\frac{1}{2}$$$
$$$\left(- \frac{\cos{\left(2 x \right)}}{2}\right)|_{\left(x=0\right)}=- \frac{1}{2}$$$
$$$\int_{0}^{\frac{\pi}{2}}\left( \sin{\left(2 x \right)} \right)dx=\left(- \frac{\cos{\left(2 x \right)}}{2}\right)|_{\left(x=\frac{\pi}{2}\right)}-\left(- \frac{\cos{\left(2 x \right)}}{2}\right)|_{\left(x=0\right)}=1$$$
Answer: $$$\int_{0}^{\frac{\pi}{2}}\left( \sin{\left(2 x \right)} \right)dx=1$$$