Kalkylator för bestämda och oegentliga integraler
Beräkna bestämda och oegentliga integraler steg för steg
Kalkylatorn försöker beräkna bestämda integraler (dvs. med integrationsgränser), inklusive oegentliga, och visar stegen.
Solution
Your input: calculate $$$\int_{0}^{8}\left( - 2 x^{2} + 16 x \right)dx$$$
First, calculate the corresponding indefinite integral: $$$\int{\left(- 2 x^{2} + 16 x\right)d x}=\frac{2 x^{2} \left(12 - x\right)}{3}$$$ (for steps, see indefinite integral calculator)
According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.
$$$\left(\frac{2 x^{2} \left(12 - x\right)}{3}\right)|_{\left(x=8\right)}=\frac{512}{3}$$$
$$$\left(\frac{2 x^{2} \left(12 - x\right)}{3}\right)|_{\left(x=0\right)}=0$$$
$$$\int_{0}^{8}\left( - 2 x^{2} + 16 x \right)dx=\left(\frac{2 x^{2} \left(12 - x\right)}{3}\right)|_{\left(x=8\right)}-\left(\frac{2 x^{2} \left(12 - x\right)}{3}\right)|_{\left(x=0\right)}=\frac{512}{3}$$$
Answer: $$$\int_{0}^{8}\left( - 2 x^{2} + 16 x \right)dx=\frac{512}{3}\approx 170.666666666667$$$