Kalkylator för bestämda och oegentliga integraler
Beräkna bestämda och oegentliga integraler steg för steg
Kalkylatorn försöker beräkna bestämda integraler (dvs. med integrationsgränser), inklusive oegentliga, och visar stegen.
Solution
Your input: calculate $$$\int_{0}^{50}\left( 25 x - 1250 \right)dx$$$
First, calculate the corresponding indefinite integral: $$$\int{\left(25 x - 1250\right)d x}=\frac{25 x \left(x - 100\right)}{2}$$$ (for steps, see indefinite integral calculator)
According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.
$$$\left(\frac{25 x \left(x - 100\right)}{2}\right)|_{\left(x=50\right)}=-31250$$$
$$$\left(\frac{25 x \left(x - 100\right)}{2}\right)|_{\left(x=0\right)}=0$$$
$$$\int_{0}^{50}\left( 25 x - 1250 \right)dx=\left(\frac{25 x \left(x - 100\right)}{2}\right)|_{\left(x=50\right)}-\left(\frac{25 x \left(x - 100\right)}{2}\right)|_{\left(x=0\right)}=-31250$$$
Answer: $$$\int_{0}^{50}\left( 25 x - 1250 \right)dx=-31250$$$