Kalkylator för bestämda och oegentliga integraler

Beräkna bestämda och oegentliga integraler steg för steg

Kalkylatorn försöker beräkna bestämda integraler (dvs. med integrationsgränser), inklusive oegentliga, och visar stegen.

Enter a function:

Integrate with respect to:

Enter a lower limit:

If you need `-oo`, type -inf.

Enter an upper limit:

If you need `oo`, type inf.

Please write without any differentials such as `dx`, `dy` etc.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: calculate $$$\int_{0}^{50}\left( 1250 - 25 x \right)dx$$$

First, calculate the corresponding indefinite integral: $$$\int{\left(1250 - 25 x\right)d x}=\frac{25 x \left(100 - x\right)}{2}$$$ (for steps, see indefinite integral calculator)

According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.

$$$\left(\frac{25 x \left(100 - x\right)}{2}\right)|_{\left(x=50\right)}=31250$$$

$$$\left(\frac{25 x \left(100 - x\right)}{2}\right)|_{\left(x=0\right)}=0$$$

$$$\int_{0}^{50}\left( 1250 - 25 x \right)dx=\left(\frac{25 x \left(100 - x\right)}{2}\right)|_{\left(x=50\right)}-\left(\frac{25 x \left(100 - x\right)}{2}\right)|_{\left(x=0\right)}=31250$$$

Answer: $$$\int_{0}^{50}\left( 1250 - 25 x \right)dx=31250$$$


Please try a new game Rotatly