Kalkylator för bestämda och oegentliga integraler

Beräkna bestämda och oegentliga integraler steg för steg

Kalkylatorn försöker beräkna bestämda integraler (dvs. med integrationsgränser), inklusive oegentliga, och visar stegen.

Enter a function:

Integrate with respect to:

Enter a lower limit:

If you need `-oo`, type -inf.

Enter an upper limit:

If you need `oo`, type inf.

Please write without any differentials such as `dx`, `dy` etc.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: calculate $$$\int_{0}^{1}\left( x \cos{\left(\pi n x \right)} \right)dx$$$

First, calculate the corresponding indefinite integral: $$$\int{x \cos{\left(\pi n x \right)} d x}=\frac{\pi n x \sin{\left(\pi n x \right)} + \cos{\left(\pi n x \right)}}{\pi^{2} n^{2}}$$$ (for steps, see indefinite integral calculator)

According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.

$$$\left(\frac{\pi n x \sin{\left(\pi n x \right)} + \cos{\left(\pi n x \right)}}{\pi^{2} n^{2}}\right)|_{\left(x=1\right)}=\frac{\pi n \sin{\left(\pi n \right)} + \cos{\left(\pi n \right)}}{\pi^{2} n^{2}}$$$

$$$\left(\frac{\pi n x \sin{\left(\pi n x \right)} + \cos{\left(\pi n x \right)}}{\pi^{2} n^{2}}\right)|_{\left(x=0\right)}=\frac{1}{\pi^{2} n^{2}}$$$

$$$\int_{0}^{1}\left( x \cos{\left(\pi n x \right)} \right)dx=\left(\frac{\pi n x \sin{\left(\pi n x \right)} + \cos{\left(\pi n x \right)}}{\pi^{2} n^{2}}\right)|_{\left(x=1\right)}-\left(\frac{\pi n x \sin{\left(\pi n x \right)} + \cos{\left(\pi n x \right)}}{\pi^{2} n^{2}}\right)|_{\left(x=0\right)}=\frac{\pi n \sin{\left(\pi n \right)} + \cos{\left(\pi n \right)}}{\pi^{2} n^{2}} - \frac{1}{\pi^{2} n^{2}}$$$

Answer: $$$\int_{0}^{1}\left( x \cos{\left(\pi n x \right)} \right)dx=\frac{\pi n \sin{\left(\pi n \right)} + \cos{\left(\pi n \right)}}{\pi^{2} n^{2}} - \frac{1}{\pi^{2} n^{2}}$$$


Please try a new game Rotatly