Kalkylator för bestämda och oegentliga integraler
Beräkna bestämda och oegentliga integraler steg för steg
Kalkylatorn försöker beräkna bestämda integraler (dvs. med integrationsgränser), inklusive oegentliga, och visar stegen.
Solution
Your input: calculate $$$\int_{0}^{1}\left( x \operatorname{atan}{\left(x \right)} \right)dx$$$
First, calculate the corresponding indefinite integral: $$$\int{x \operatorname{atan}{\left(x \right)} d x}=\frac{x^{2} \operatorname{atan}{\left(x \right)} - x + \operatorname{atan}{\left(x \right)}}{2}$$$ (for steps, see indefinite integral calculator)
According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.
$$$\left(\frac{x^{2} \operatorname{atan}{\left(x \right)} - x + \operatorname{atan}{\left(x \right)}}{2}\right)|_{\left(x=1\right)}=- \frac{1}{2} + \frac{\pi}{4}$$$
$$$\left(\frac{x^{2} \operatorname{atan}{\left(x \right)} - x + \operatorname{atan}{\left(x \right)}}{2}\right)|_{\left(x=0\right)}=0$$$
$$$\int_{0}^{1}\left( x \operatorname{atan}{\left(x \right)} \right)dx=\left(\frac{x^{2} \operatorname{atan}{\left(x \right)} - x + \operatorname{atan}{\left(x \right)}}{2}\right)|_{\left(x=1\right)}-\left(\frac{x^{2} \operatorname{atan}{\left(x \right)} - x + \operatorname{atan}{\left(x \right)}}{2}\right)|_{\left(x=0\right)}=- \frac{1}{2} + \frac{\pi}{4}$$$
Answer: $$$\int_{0}^{1}\left( x \operatorname{atan}{\left(x \right)} \right)dx=- \frac{1}{2} + \frac{\pi}{4}\approx 0.285398163397448$$$