Kalkylator för bestämda och oegentliga integraler
Beräkna bestämda och oegentliga integraler steg för steg
Kalkylatorn försöker beräkna bestämda integraler (dvs. med integrationsgränser), inklusive oegentliga, och visar stegen.
Solution
Your input: calculate $$$\int_{0}^{1}\left( \frac{\pi x^{5}}{5} \right)dx$$$
First, calculate the corresponding indefinite integral: $$$\int{\frac{\pi x^{5}}{5} d x}=\frac{\pi x^{6}}{30}$$$ (for steps, see indefinite integral calculator)
According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.
$$$\left(\frac{\pi x^{6}}{30}\right)|_{\left(x=1\right)}=\frac{\pi}{30}$$$
$$$\left(\frac{\pi x^{6}}{30}\right)|_{\left(x=0\right)}=0$$$
$$$\int_{0}^{1}\left( \frac{\pi x^{5}}{5} \right)dx=\left(\frac{\pi x^{6}}{30}\right)|_{\left(x=1\right)}-\left(\frac{\pi x^{6}}{30}\right)|_{\left(x=0\right)}=\frac{\pi}{30}$$$
Answer: $$$\int_{0}^{1}\left( \frac{\pi x^{5}}{5} \right)dx=\frac{\pi}{30}\approx 0.10471975511966$$$