Kalkylator för bestämda och oegentliga integraler
Beräkna bestämda och oegentliga integraler steg för steg
Kalkylatorn försöker beräkna bestämda integraler (dvs. med integrationsgränser), inklusive oegentliga, och visar stegen.
Solution
Your input: calculate $$$\int_{0}^{1}\left( e^{- \sqrt{x}} \right)dx$$$
First, calculate the corresponding indefinite integral: $$$\int{e^{- \sqrt{x}} d x}=2 \left(- \sqrt{x} - 1\right) e^{- \sqrt{x}}$$$ (for steps, see indefinite integral calculator)
According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.
$$$\left(2 \left(- \sqrt{x} - 1\right) e^{- \sqrt{x}}\right)|_{\left(x=1\right)}=- \frac{4}{e}$$$
$$$\left(2 \left(- \sqrt{x} - 1\right) e^{- \sqrt{x}}\right)|_{\left(x=0\right)}=-2$$$
$$$\int_{0}^{1}\left( e^{- \sqrt{x}} \right)dx=\left(2 \left(- \sqrt{x} - 1\right) e^{- \sqrt{x}}\right)|_{\left(x=1\right)}-\left(2 \left(- \sqrt{x} - 1\right) e^{- \sqrt{x}}\right)|_{\left(x=0\right)}=2 - \frac{4}{e}$$$
Answer: $$$\int_{0}^{1}\left( e^{- \sqrt{x}} \right)dx=2 - \frac{4}{e}\approx 0.528482235314231$$$