Kalkylator för bestämda och oegentliga integraler
Beräkna bestämda och oegentliga integraler steg för steg
Kalkylatorn försöker beräkna bestämda integraler (dvs. med integrationsgränser), inklusive oegentliga, och visar stegen.
Solution
Your input: calculate $$$\int_{0}^{1}\left( - \frac{3 x^{2}}{2} + 3 x \right)dx$$$
First, calculate the corresponding indefinite integral: $$$\int{\left(- \frac{3 x^{2}}{2} + 3 x\right)d x}=\frac{x^{2} \left(3 - x\right)}{2}$$$ (for steps, see indefinite integral calculator)
According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.
$$$\left(\frac{x^{2} \left(3 - x\right)}{2}\right)|_{\left(x=1\right)}=1$$$
$$$\left(\frac{x^{2} \left(3 - x\right)}{2}\right)|_{\left(x=0\right)}=0$$$
$$$\int_{0}^{1}\left( - \frac{3 x^{2}}{2} + 3 x \right)dx=\left(\frac{x^{2} \left(3 - x\right)}{2}\right)|_{\left(x=1\right)}-\left(\frac{x^{2} \left(3 - x\right)}{2}\right)|_{\left(x=0\right)}=1$$$
Answer: $$$\int_{0}^{1}\left( - \frac{3 x^{2}}{2} + 3 x \right)dx=1$$$