Kalkylator för bestämda och oegentliga integraler
Beräkna bestämda och oegentliga integraler steg för steg
Kalkylatorn försöker beräkna bestämda integraler (dvs. med integrationsgränser), inklusive oegentliga, och visar stegen.
Solution
Your input: calculate $$$\int_{-\infty}^{3}\left( \frac{\ln{\left(x \right)}}{x} \right)dx$$$
First, calculate the corresponding indefinite integral: $$$\int{\frac{\ln{\left(x \right)}}{x} d x}=\frac{\ln{\left(\left|{x}\right| \right)}^{2}}{2}$$$ (for steps, see indefinite integral calculator)
Since there is infinity in the lower bound, this is an improper integral of type 1.
To evaluate an integral over an interval, we use the Fundamental Theorem of Calculus. However, we need to use limit if an endpoint of the interval is special (infinite).
$$$\int_{-\infty}^{3}\left( \frac{\ln{\left(x \right)}}{x} \right)dx=\left(\frac{\ln{\left(\left|{x}\right| \right)}^{2}}{2}\right)|_{\left(x=3\right)}-\lim_{x \to -\infty}\left(\frac{\ln{\left(\left|{x}\right| \right)}^{2}}{2}\right)=-\infty$$$
Since the value of the integral is not finite, then it is divergent.
Answer: the integral is divergent.