Kalkylator för bestämda och oegentliga integraler
Beräkna bestämda och oegentliga integraler steg för steg
Kalkylatorn försöker beräkna bestämda integraler (dvs. med integrationsgränser), inklusive oegentliga, och visar stegen.
Solution
Your input: calculate $$$\int_{-3}^{3}\left( \frac{x^{3}}{18} \right)dx$$$
First, calculate the corresponding indefinite integral: $$$\int{\frac{x^{3}}{18} d x}=\frac{x^{4}}{72}$$$ (for steps, see indefinite integral calculator)
According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.
$$$\left(\frac{x^{4}}{72}\right)|_{\left(x=3\right)}=\frac{9}{8}$$$
$$$\left(\frac{x^{4}}{72}\right)|_{\left(x=-3\right)}=\frac{9}{8}$$$
$$$\int_{-3}^{3}\left( \frac{x^{3}}{18} \right)dx=\left(\frac{x^{4}}{72}\right)|_{\left(x=3\right)}-\left(\frac{x^{4}}{72}\right)|_{\left(x=-3\right)}=0$$$
Answer: $$$\int_{-3}^{3}\left( \frac{x^{3}}{18} \right)dx=0$$$