Andra derivatan av $$$x \sin{\left(x \right)}$$$
Relaterade kalkylatorer: Derivata-beräknare, Kalkylator för logaritmisk derivering
Din inmatning
Bestäm $$$\frac{d^{2}}{dx^{2}} \left(x \sin{\left(x \right)}\right)$$$.
Lösning
Bestäm den första derivatan $$$\frac{d}{dx} \left(x \sin{\left(x \right)}\right)$$$
Tillämpa produktregeln $$$\frac{d}{dx} \left(f{\left(x \right)} g{\left(x \right)}\right) = \frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} + f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ med $$$f{\left(x \right)} = x$$$ och $$$g{\left(x \right)} = \sin{\left(x \right)}$$$:
$${\color{red}\left(\frac{d}{dx} \left(x \sin{\left(x \right)}\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(x\right) \sin{\left(x \right)} + x \frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)}$$Derivatan av sinus är $$$\frac{d}{dx} \left(\sin{\left(x \right)}\right) = \cos{\left(x \right)}$$$:
$$x {\color{red}\left(\frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)} + \sin{\left(x \right)} \frac{d}{dx} \left(x\right) = x {\color{red}\left(\cos{\left(x \right)}\right)} + \sin{\left(x \right)} \frac{d}{dx} \left(x\right)$$Tillämpa potensregeln $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ med $$$n = 1$$$, det vill säga $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$x \cos{\left(x \right)} + \sin{\left(x \right)} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = x \cos{\left(x \right)} + \sin{\left(x \right)} {\color{red}\left(1\right)}$$Alltså, $$$\frac{d}{dx} \left(x \sin{\left(x \right)}\right) = x \cos{\left(x \right)} + \sin{\left(x \right)}$$$.
Därefter, $$$\frac{d^{2}}{dx^{2}} \left(x \sin{\left(x \right)}\right) = \frac{d}{dx} \left(x \cos{\left(x \right)} + \sin{\left(x \right)}\right)$$$
Derivatan av en summa/differens är summan/differensen av derivatorna:
$${\color{red}\left(\frac{d}{dx} \left(x \cos{\left(x \right)} + \sin{\left(x \right)}\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(x \cos{\left(x \right)}\right) + \frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)}$$Derivatan av sinus är $$$\frac{d}{dx} \left(\sin{\left(x \right)}\right) = \cos{\left(x \right)}$$$:
$${\color{red}\left(\frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)} + \frac{d}{dx} \left(x \cos{\left(x \right)}\right) = {\color{red}\left(\cos{\left(x \right)}\right)} + \frac{d}{dx} \left(x \cos{\left(x \right)}\right)$$Tillämpa produktregeln $$$\frac{d}{dx} \left(f{\left(x \right)} g{\left(x \right)}\right) = \frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} + f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ med $$$f{\left(x \right)} = x$$$ och $$$g{\left(x \right)} = \cos{\left(x \right)}$$$:
$$\cos{\left(x \right)} + {\color{red}\left(\frac{d}{dx} \left(x \cos{\left(x \right)}\right)\right)} = \cos{\left(x \right)} + {\color{red}\left(\frac{d}{dx} \left(x\right) \cos{\left(x \right)} + x \frac{d}{dx} \left(\cos{\left(x \right)}\right)\right)}$$Tillämpa potensregeln $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ med $$$n = 1$$$, det vill säga $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$x \frac{d}{dx} \left(\cos{\left(x \right)}\right) + \cos{\left(x \right)} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} + \cos{\left(x \right)} = x \frac{d}{dx} \left(\cos{\left(x \right)}\right) + \cos{\left(x \right)} {\color{red}\left(1\right)} + \cos{\left(x \right)}$$Derivatan av cosinus är $$$\frac{d}{dx} \left(\cos{\left(x \right)}\right) = - \sin{\left(x \right)}$$$:
$$x {\color{red}\left(\frac{d}{dx} \left(\cos{\left(x \right)}\right)\right)} + 2 \cos{\left(x \right)} = x {\color{red}\left(- \sin{\left(x \right)}\right)} + 2 \cos{\left(x \right)}$$Alltså, $$$\frac{d}{dx} \left(x \cos{\left(x \right)} + \sin{\left(x \right)}\right) = - x \sin{\left(x \right)} + 2 \cos{\left(x \right)}$$$.
Således, $$$\frac{d^{2}}{dx^{2}} \left(x \sin{\left(x \right)}\right) = - x \sin{\left(x \right)} + 2 \cos{\left(x \right)}$$$.
Svar
$$$\frac{d^{2}}{dx^{2}} \left(x \sin{\left(x \right)}\right) = - x \sin{\left(x \right)} + 2 \cos{\left(x \right)}$$$A