Andra derivatan av $$$- \sin{\left(x \right)}$$$
Relaterade kalkylatorer: Derivata-beräknare, Kalkylator för logaritmisk derivering
Din inmatning
Bestäm $$$\frac{d^{2}}{dx^{2}} \left(- \sin{\left(x \right)}\right)$$$.
Lösning
Bestäm den första derivatan $$$\frac{d}{dx} \left(- \sin{\left(x \right)}\right)$$$
Tillämpa konstantfaktorregeln $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ med $$$c = -1$$$ och $$$f{\left(x \right)} = \sin{\left(x \right)}$$$:
$${\color{red}\left(\frac{d}{dx} \left(- \sin{\left(x \right)}\right)\right)} = {\color{red}\left(- \frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)}$$Derivatan av sinus är $$$\frac{d}{dx} \left(\sin{\left(x \right)}\right) = \cos{\left(x \right)}$$$:
$$- {\color{red}\left(\frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)} = - {\color{red}\left(\cos{\left(x \right)}\right)}$$Alltså, $$$\frac{d}{dx} \left(- \sin{\left(x \right)}\right) = - \cos{\left(x \right)}$$$.
Därefter, $$$\frac{d^{2}}{dx^{2}} \left(- \sin{\left(x \right)}\right) = \frac{d}{dx} \left(- \cos{\left(x \right)}\right)$$$
Tillämpa konstantfaktorregeln $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ med $$$c = -1$$$ och $$$f{\left(x \right)} = \cos{\left(x \right)}$$$:
$${\color{red}\left(\frac{d}{dx} \left(- \cos{\left(x \right)}\right)\right)} = {\color{red}\left(- \frac{d}{dx} \left(\cos{\left(x \right)}\right)\right)}$$Derivatan av cosinus är $$$\frac{d}{dx} \left(\cos{\left(x \right)}\right) = - \sin{\left(x \right)}$$$:
$$- {\color{red}\left(\frac{d}{dx} \left(\cos{\left(x \right)}\right)\right)} = - {\color{red}\left(- \sin{\left(x \right)}\right)}$$Alltså, $$$\frac{d}{dx} \left(- \cos{\left(x \right)}\right) = \sin{\left(x \right)}$$$.
Således, $$$\frac{d^{2}}{dx^{2}} \left(- \sin{\left(x \right)}\right) = \sin{\left(x \right)}$$$.
Svar
$$$\frac{d^{2}}{dx^{2}} \left(- \sin{\left(x \right)}\right) = \sin{\left(x \right)}$$$A