Calculadora de desvio padrão de amostra/população

Calcular desvio padrão passo a passo

Para o conjunto de observações fornecido, a calculadora encontrará seu desvio padrão (amostra ou população), com as etapas mostradas.

Separados por vírgula.

Se a calculadora não calculou algo ou você identificou um erro, ou tem uma sugestão/comentário, escreva nos comentários abaixo.

Sua entrada

Encontre o desvio padrão amostral de $$$1$$$, $$$37$$$, $$$9$$$, $$$0$$$, $$$- \frac{3}{5}$$$, $$$9$$$, $$$10$$$.

Solução

O desvio padrão de amostra dos dados é dado pela fórmula $$$s = \sqrt{\frac{\sum_{i=1}^{n} \left(x_{i} - \mu\right)^{2}}{n - 1}}$$$, onde $$$n$$$ é o número de valores, $$$x_i, i=\overline{1..n}$$$ são os próprios valores e $$$\mu$$$ é a média dos valores.

Na verdade, é a raiz quadrada de variância.

A média dos dados é $$$\mu = \frac{327}{35}$$$ (para calculá-la, consulte calculadora de média).

Como temos $$$n$$$ pontos, $$$n = 7$$$.

A soma de $$$\left(x_{i} - \mu\right)^{2}$$$ é $$$\left(1 - \frac{327}{35}\right)^{2} + \left(37 - \frac{327}{35}\right)^{2} + \left(9 - \frac{327}{35}\right)^{2} + \left(0 - \frac{327}{35}\right)^{2} + \left(- \frac{3}{5} - \frac{327}{35}\right)^{2} + \left(9 - \frac{327}{35}\right)^{2} + \left(10 - \frac{327}{35}\right)^{2} = \frac{178734}{175}.$$$

Assim, $$$\frac{\sum_{i=1}^{n} \left(x_{i} - \mu\right)^{2}}{n - 1} = \frac{\frac{178734}{175}}{6} = \frac{29789}{175}$$$.

Finalmente, $$$s = \sqrt{\frac{\sum_{i=1}^{n} \left(x_{i} - \mu\right)^{2}}{n - 1}} = \sqrt{\frac{29789}{175}} = \frac{\sqrt{208523}}{35}$$$.

Responder

O desvio padrão da amostra é $$$s = \frac{\sqrt{208523}}{35}\approx 13.04694819269461$$$A.