$$$\frac{\sqrt{3}}{3}\cdot \left\langle 1, -1, 1\right\rangle$$$
Sua entrada
Calcule $$$\frac{\sqrt{3}}{3}\cdot \left\langle 1, -1, 1\right\rangle$$$.
Solução
Multiplique cada coordenada do vetor pelo escalar:
$$${\color{Violet}\left(\frac{\sqrt{3}}{3}\right)}\cdot \left\langle 1, -1, 1\right\rangle = \left\langle {\color{Violet}\left(\frac{\sqrt{3}}{3}\right)}\cdot \left(1\right), {\color{Violet}\left(\frac{\sqrt{3}}{3}\right)}\cdot \left(-1\right), {\color{Violet}\left(\frac{\sqrt{3}}{3}\right)}\cdot \left(1\right)\right\rangle = \left\langle \frac{\sqrt{3}}{3}, - \frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}\right\rangle$$$
Resposta
$$$\frac{\sqrt{3}}{3}\cdot \left\langle 1, -1, 1\right\rangle = \left\langle \frac{\sqrt{3}}{3}, - \frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}\right\rangle\approx \left\langle 0.577350269189626, -0.577350269189626, 0.577350269189626\right\rangle$$$A