Módulo de $$$\left\langle \frac{\sqrt{2}}{2 \sqrt{t}}, e^{t}, - e^{- t}\right\rangle$$$
Sua entrada
Encontre a norma (comprimento) de $$$\mathbf{\vec{u}} = \left\langle \frac{\sqrt{2}}{2 \sqrt{t}}, e^{t}, - e^{- t}\right\rangle$$$.
Solução
O módulo de um vetor é dado pela fórmula $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\sum_{i=1}^{n} \left|{u_{i}}\right|^{2}}$$$.
A soma dos quadrados dos valores absolutos das coordenadas é $$$\left|{\frac{\sqrt{2}}{2 \sqrt{t}}}\right|^{2} + \left|{e^{t}}\right|^{2} + \left|{- e^{- t}}\right|^{2} = e^{2 t} + \frac{1}{2 \left|{\sqrt{t}}\right|^{2}} + e^{- 2 t}.$$$
Portanto, a norma do vetor é $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{e^{2 t} + \frac{1}{2 \left|{\sqrt{t}}\right|^{2}} + e^{- 2 t}} = \sqrt{e^{2 t} + \frac{1}{2 \left|{t}\right|} + e^{- 2 t}}.$$$
Resposta
O módulo é $$$\sqrt{e^{2 t} + \frac{1}{2 \left|{t}\right|} + e^{- 2 t}} = \left(e^{2 t} + \frac{0.5}{\left|{t}\right|} + e^{- 2 t}\right)^{0.5}$$$A.