Módulo de $$$\left\langle 3 \sqrt{6} t^{2}, - 6 t, \sqrt{6}\right\rangle$$$
Sua entrada
Encontre a norma (comprimento) de $$$\mathbf{\vec{u}} = \left\langle 3 \sqrt{6} t^{2}, - 6 t, \sqrt{6}\right\rangle$$$.
Solução
O módulo de um vetor é dado pela fórmula $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\sum_{i=1}^{n} \left|{u_{i}}\right|^{2}}$$$.
A soma dos quadrados dos valores absolutos das coordenadas é $$$\left|{3 \sqrt{6} t^{2}}\right|^{2} + \left|{- 6 t}\right|^{2} + \left|{\sqrt{6}}\right|^{2} = 54 t^{4} + 36 t^{2} + 6$$$.
Portanto, a norma do vetor é $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{54 t^{4} + 36 t^{2} + 6} = \sqrt{6} \left(3 t^{2} + 1\right)$$$.
Resposta
O módulo é $$$\sqrt{6} \left(3 t^{2} + 1\right)\approx 7.348469228349534 t^{2} + 2.449489742783178$$$A.
Please try a new game Rotatly