Módulo de $$$\left\langle 2, \frac{\sqrt{2} \left(1 - 2 t\right) e^{- t}}{4 t^{\frac{3}{2}}}, \frac{\sqrt{2} \left(2 t + 1\right) e^{t}}{4 t^{\frac{3}{2}}}\right\rangle$$$

A calculadora encontrará a magnitude (comprimento, norma) do vetor $$$\left\langle 2, \frac{\sqrt{2} \left(1 - 2 t\right) e^{- t}}{4 t^{\frac{3}{2}}}, \frac{\sqrt{2} \left(2 t + 1\right) e^{t}}{4 t^{\frac{3}{2}}}\right\rangle$$$, com passos mostrados.
$$$\langle$$$ $$$\rangle$$$
Separados por vírgula.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre a norma (comprimento) de $$$\mathbf{\vec{u}} = \left\langle 2, \frac{\sqrt{2} \left(1 - 2 t\right) e^{- t}}{4 t^{\frac{3}{2}}}, \frac{\sqrt{2} \left(2 t + 1\right) e^{t}}{4 t^{\frac{3}{2}}}\right\rangle.$$$

Solução

O módulo de um vetor é dado pela fórmula $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\sum_{i=1}^{n} \left|{u_{i}}\right|^{2}}$$$.

A soma dos quadrados dos valores absolutos das coordenadas é $$$\left|{2}\right|^{2} + \left|{\frac{\sqrt{2} \left(1 - 2 t\right) e^{- t}}{4 t^{\frac{3}{2}}}}\right|^{2} + \left|{\frac{\sqrt{2} \left(2 t + 1\right) e^{t}}{4 t^{\frac{3}{2}}}}\right|^{2} = \frac{\left(2 t - 1\right)^{2} e^{- 2 t}}{8 \left|{t^{\frac{3}{2}}}\right|^{2}} + \frac{\left(2 t + 1\right)^{2} e^{2 t}}{8 \left|{t^{\frac{3}{2}}}\right|^{2}} + 4.$$$

Portanto, a norma do vetor é $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\frac{\left(2 t - 1\right)^{2} e^{- 2 t}}{8 \left|{t^{\frac{3}{2}}}\right|^{2}} + \frac{\left(2 t + 1\right)^{2} e^{2 t}}{8 \left|{t^{\frac{3}{2}}}\right|^{2}} + 4} = \frac{\sqrt{64 t^{4} e^{2 t} + 2 \left(2 t - 1\right)^{2} \left|{t}\right| + 2 \left(2 t + 1\right)^{2} e^{4 t} \left|{t}\right|} e^{- t}}{4 t^{2}}.$$$

Resposta

O módulo é $$$\frac{\sqrt{64 t^{4} e^{2 t} + 2 \left(2 t - 1\right)^{2} \left|{t}\right| + 2 \left(2 t + 1\right)^{2} e^{4 t} \left|{t}\right|} e^{- t}}{4 t^{2}} = \frac{0.25 \left(64 t^{4} e^{2 t} + 2 \left(2 t - 1\right)^{2} \left|{t}\right| + 2 \left(2 t + 1\right)^{2} e^{4 t} \left|{t}\right|\right)^{0.5} e^{- t}}{t^{2}}.$$$A


Please try a new game Rotatly