Módulo de $$$\left\langle 2 \cos{\left(t \right)}, - 2 \sin{\left(t \right)}, 0\right\rangle$$$

A calculadora encontrará a magnitude (comprimento, norma) do vetor $$$\left\langle 2 \cos{\left(t \right)}, - 2 \sin{\left(t \right)}, 0\right\rangle$$$, com passos mostrados.
$$$\langle$$$ $$$\rangle$$$
Separados por vírgula.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre a norma (comprimento) de $$$\mathbf{\vec{u}} = \left\langle 2 \cos{\left(t \right)}, - 2 \sin{\left(t \right)}, 0\right\rangle$$$.

Solução

O módulo de um vetor é dado pela fórmula $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\sum_{i=1}^{n} \left|{u_{i}}\right|^{2}}$$$.

A soma dos quadrados dos valores absolutos das coordenadas é $$$\left|{2 \cos{\left(t \right)}}\right|^{2} + \left|{- 2 \sin{\left(t \right)}}\right|^{2} + \left|{0}\right|^{2} = 4 \sin^{2}{\left(t \right)} + 4 \cos^{2}{\left(t \right)}$$$.

Portanto, a norma do vetor é $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{4 \sin^{2}{\left(t \right)} + 4 \cos^{2}{\left(t \right)}} = 2$$$.

Resposta

O módulo é $$$2$$$A.


Please try a new game Rotatly