Módulo de $$$\left\langle - \frac{\sqrt{5} \cos{\left(t \right)}}{5}, - \frac{\sqrt{5} \sin{\left(t \right)}}{5}, 0\right\rangle$$$
Sua entrada
Encontre a norma (comprimento) de $$$\mathbf{\vec{u}} = \left\langle - \frac{\sqrt{5} \cos{\left(t \right)}}{5}, - \frac{\sqrt{5} \sin{\left(t \right)}}{5}, 0\right\rangle$$$.
Solução
O módulo de um vetor é dado pela fórmula $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\sum_{i=1}^{n} \left|{u_{i}}\right|^{2}}$$$.
A soma dos quadrados dos valores absolutos das coordenadas é $$$\left|{- \frac{\sqrt{5} \cos{\left(t \right)}}{5}}\right|^{2} + \left|{- \frac{\sqrt{5} \sin{\left(t \right)}}{5}}\right|^{2} + \left|{0}\right|^{2} = \frac{\sin^{2}{\left(t \right)}}{5} + \frac{\cos^{2}{\left(t \right)}}{5}.$$$
Portanto, a norma do vetor é $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\frac{\sin^{2}{\left(t \right)}}{5} + \frac{\cos^{2}{\left(t \right)}}{5}} = \frac{\sqrt{5}}{5}$$$.
Resposta
O módulo é $$$\frac{\sqrt{5}}{5}\approx 0.447213595499958$$$A.