Calculadora de Subtração de Matriz

Subtrair matrizes passo a passo

A calculadora encontrará a diferença de duas matrizes (se possível), com as etapas mostradas. Subtrai matrizes de qualquer tamanho até 10x10 (2x2, 3x3, 4x4, etc.).

$$$\times$$$
$$$\times$$$

Se a calculadora não calculou algo ou você identificou um erro, ou tem uma sugestão/comentário, escreva nos comentários abaixo.

Sua entrada

Calcule $$$\left[\begin{array}{ccc}1 & 2 & -3\\2 & -3 & -5\\1 & 7 & 1\end{array}\right] - \left[\begin{array}{ccc}2 & -3 & 0\\1 & 1 & 5\\1 & 0 & -1\end{array}\right].$$$

Solução

$$$\left[\begin{array}{ccc}{\color{Purple}1} & {\color{DarkCyan}2} & {\color{Blue}-3}\\{\color{Chocolate}2} & {\color{OrangeRed}-3} & {\color{Crimson}-5}\\{\color{SaddleBrown}1} & {\color{GoldenRod}7} & {\color{Fuchsia}1}\end{array}\right] - \left[\begin{array}{ccc}{\color{Purple}2} & {\color{DarkCyan}-3} & {\color{Blue}0}\\{\color{Chocolate}1} & {\color{OrangeRed}1} & {\color{Crimson}5}\\{\color{SaddleBrown}1} & {\color{GoldenRod}0} & {\color{Fuchsia}-1}\end{array}\right] = \left[\begin{array}{ccc}{\color{Purple}\left(1\right)} - {\color{Purple}\left(2\right)} & {\color{DarkCyan}\left(2\right)} - {\color{DarkCyan}\left(-3\right)} & {\color{Blue}\left(-3\right)} - {\color{Blue}\left(0\right)}\\{\color{Chocolate}\left(2\right)} - {\color{Chocolate}\left(1\right)} & {\color{OrangeRed}\left(-3\right)} - {\color{OrangeRed}\left(1\right)} & {\color{Crimson}\left(-5\right)} - {\color{Crimson}\left(5\right)}\\{\color{SaddleBrown}\left(1\right)} - {\color{SaddleBrown}\left(1\right)} & {\color{GoldenRod}\left(7\right)} - {\color{GoldenRod}\left(0\right)} & {\color{Fuchsia}\left(1\right)} - {\color{Fuchsia}\left(-1\right)}\end{array}\right] = \left[\begin{array}{ccc}-1 & 5 & -3\\1 & -4 & -10\\0 & 7 & 2\end{array}\right]$$$

Responder

$$$\left[\begin{array}{ccc}1 & 2 & -3\\2 & -3 & -5\\1 & 7 & 1\end{array}\right] - \left[\begin{array}{ccc}2 & -3 & 0\\1 & 1 & 5\\1 & 0 & -1\end{array}\right] = \left[\begin{array}{ccc}-1 & 5 & -3\\1 & -4 & -10\\0 & 7 & 2\end{array}\right]$$$A