# $\left[\begin{array}{ccc}4 & 5 & 7\\2 & 1 & 0\\1 & 2 & 3\end{array}\right]\cdot \left[\begin{array}{ccc}- \frac{1}{2} & 0 & \frac{1}{2}\\5 & -1 & -1\\- \frac{7}{2} & 1 & \frac{1}{2}\end{array}\right]$

A calculadora multiplicará a matriz $3$ x $3$ $\left[\begin{array}{ccc}4 & 5 & 7\\2 & 1 & 0\\1 & 2 & 3\end{array}\right]$ pela matriz $3$ x $3$ $\left[\begin{array}{ccc}- \frac{1}{2} & 0 & \frac{1}{2}\\5 & -1 & -1\\- \frac{7}{2} & 1 & \frac{1}{2}\end{array}\right]$, com as etapas mostradas.

$\times$
$\times$

Se a calculadora não calculou algo ou você identificou um erro, ou tem uma sugestão/comentário, escreva nos comentários abaixo.

Calcule $\left[\begin{array}{ccc}4 & 5 & 7\\2 & 1 & 0\\1 & 2 & 3\end{array}\right]\cdot \left[\begin{array}{ccc}- \frac{1}{2} & 0 & \frac{1}{2}\\5 & -1 & -1\\- \frac{7}{2} & 1 & \frac{1}{2}\end{array}\right].$
$\left[\begin{array}{ccc}{\color{DarkMagenta}4} & {\color{Fuchsia}5} & {\color{Peru}7}\\{\color{SaddleBrown}2} & {\color{Magenta}1} & {\color{Green}0}\\{\color{Purple}1} & {\color{Brown}2} & {\color{DarkCyan}3}\end{array}\right]\cdot \left[\begin{array}{ccc}{\color{Peru}- \frac{1}{2}} & {\color{GoldenRod}0} & {\color{Chocolate}\frac{1}{2}}\\{\color{Fuchsia}5} & {\color{Purple}-1} & {\color{DeepPink}-1}\\{\color{Green}- \frac{7}{2}} & {\color{Magenta}1} & {\color{Chartreuse}\frac{1}{2}}\end{array}\right] = \left[\begin{array}{ccc}{\color{DarkMagenta}\left(4\right)}\cdot {\color{Peru}\left(- \frac{1}{2}\right)} + {\color{Fuchsia}\left(5\right)}\cdot {\color{Fuchsia}\left(5\right)} + {\color{Peru}\left(7\right)}\cdot {\color{Green}\left(- \frac{7}{2}\right)} & {\color{DarkMagenta}\left(4\right)}\cdot {\color{GoldenRod}\left(0\right)} + {\color{Fuchsia}\left(5\right)}\cdot {\color{Purple}\left(-1\right)} + {\color{Peru}\left(7\right)}\cdot {\color{Magenta}\left(1\right)} & {\color{DarkMagenta}\left(4\right)}\cdot {\color{Chocolate}\left(\frac{1}{2}\right)} + {\color{Fuchsia}\left(5\right)}\cdot {\color{DeepPink}\left(-1\right)} + {\color{Peru}\left(7\right)}\cdot {\color{Chartreuse}\left(\frac{1}{2}\right)}\\{\color{SaddleBrown}\left(2\right)}\cdot {\color{Peru}\left(- \frac{1}{2}\right)} + {\color{Magenta}\left(1\right)}\cdot {\color{Fuchsia}\left(5\right)} + {\color{Green}\left(0\right)}\cdot {\color{Green}\left(- \frac{7}{2}\right)} & {\color{SaddleBrown}\left(2\right)}\cdot {\color{GoldenRod}\left(0\right)} + {\color{Magenta}\left(1\right)}\cdot {\color{Purple}\left(-1\right)} + {\color{Green}\left(0\right)}\cdot {\color{Magenta}\left(1\right)} & {\color{SaddleBrown}\left(2\right)}\cdot {\color{Chocolate}\left(\frac{1}{2}\right)} + {\color{Magenta}\left(1\right)}\cdot {\color{DeepPink}\left(-1\right)} + {\color{Green}\left(0\right)}\cdot {\color{Chartreuse}\left(\frac{1}{2}\right)}\\{\color{Purple}\left(1\right)}\cdot {\color{Peru}\left(- \frac{1}{2}\right)} + {\color{Brown}\left(2\right)}\cdot {\color{Fuchsia}\left(5\right)} + {\color{DarkCyan}\left(3\right)}\cdot {\color{Green}\left(- \frac{7}{2}\right)} & {\color{Purple}\left(1\right)}\cdot {\color{GoldenRod}\left(0\right)} + {\color{Brown}\left(2\right)}\cdot {\color{Purple}\left(-1\right)} + {\color{DarkCyan}\left(3\right)}\cdot {\color{Magenta}\left(1\right)} & {\color{Purple}\left(1\right)}\cdot {\color{Chocolate}\left(\frac{1}{2}\right)} + {\color{Brown}\left(2\right)}\cdot {\color{DeepPink}\left(-1\right)} + {\color{DarkCyan}\left(3\right)}\cdot {\color{Chartreuse}\left(\frac{1}{2}\right)}\end{array}\right] = \left[\begin{array}{ccc}- \frac{3}{2} & 2 & \frac{1}{2}\\4 & -1 & 0\\-1 & 1 & 0\end{array}\right]$
$\left[\begin{array}{ccc}4 & 5 & 7\\2 & 1 & 0\\1 & 2 & 3\end{array}\right]\cdot \left[\begin{array}{ccc}- \frac{1}{2} & 0 & \frac{1}{2}\\5 & -1 & -1\\- \frac{7}{2} & 1 & \frac{1}{2}\end{array}\right] = \left[\begin{array}{ccc}- \frac{3}{2} & 2 & \frac{1}{2}\\4 & -1 & 0\\-1 & 1 & 0\end{array}\right] = \left[\begin{array}{ccc}-1.5 & 2 & 0.5\\4 & -1 & 0\\-1 & 1 & 0\end{array}\right]$A