# $\left[\begin{array}{cc}3 & 2\\2 & 3\\2 & -2\end{array}\right]\cdot \left[\begin{array}{cc}\frac{17}{225} & - \frac{8}{225}\\- \frac{8}{225} & \frac{17}{225}\end{array}\right]$

A calculadora multiplicará a matriz $3$ x $2$ $\left[\begin{array}{cc}3 & 2\\2 & 3\\2 & -2\end{array}\right]$ pela matriz $2$ x $2$ $\left[\begin{array}{cc}\frac{17}{225} & - \frac{8}{225}\\- \frac{8}{225} & \frac{17}{225}\end{array}\right]$, com as etapas mostradas.

$\times$
$\times$

Se a calculadora não calculou algo ou você identificou um erro, ou tem uma sugestão/comentário, escreva nos comentários abaixo.

Calcule $\left[\begin{array}{cc}3 & 2\\2 & 3\\2 & -2\end{array}\right]\cdot \left[\begin{array}{cc}\frac{17}{225} & - \frac{8}{225}\\- \frac{8}{225} & \frac{17}{225}\end{array}\right].$
$\left[\begin{array}{cc}{\color{OrangeRed}3} & {\color{DarkCyan}2}\\{\color{GoldenRod}2} & {\color{Fuchsia}3}\\{\color{BlueViolet}2} & {\color{SaddleBrown}-2}\end{array}\right]\cdot \left[\begin{array}{cc}{\color{Red}\frac{17}{225}} & {\color{Magenta}- \frac{8}{225}}\\{\color{SaddleBrown}- \frac{8}{225}} & {\color{Peru}\frac{17}{225}}\end{array}\right] = \left[\begin{array}{cc}{\color{OrangeRed}\left(3\right)}\cdot {\color{Red}\left(\frac{17}{225}\right)} + {\color{DarkCyan}\left(2\right)}\cdot {\color{SaddleBrown}\left(- \frac{8}{225}\right)} & {\color{OrangeRed}\left(3\right)}\cdot {\color{Magenta}\left(- \frac{8}{225}\right)} + {\color{DarkCyan}\left(2\right)}\cdot {\color{Peru}\left(\frac{17}{225}\right)}\\{\color{GoldenRod}\left(2\right)}\cdot {\color{Red}\left(\frac{17}{225}\right)} + {\color{Fuchsia}\left(3\right)}\cdot {\color{SaddleBrown}\left(- \frac{8}{225}\right)} & {\color{GoldenRod}\left(2\right)}\cdot {\color{Magenta}\left(- \frac{8}{225}\right)} + {\color{Fuchsia}\left(3\right)}\cdot {\color{Peru}\left(\frac{17}{225}\right)}\\{\color{BlueViolet}\left(2\right)}\cdot {\color{Red}\left(\frac{17}{225}\right)} + {\color{SaddleBrown}\left(-2\right)}\cdot {\color{SaddleBrown}\left(- \frac{8}{225}\right)} & {\color{BlueViolet}\left(2\right)}\cdot {\color{Magenta}\left(- \frac{8}{225}\right)} + {\color{SaddleBrown}\left(-2\right)}\cdot {\color{Peru}\left(\frac{17}{225}\right)}\end{array}\right] = \left[\begin{array}{cc}\frac{7}{45} & \frac{2}{45}\\\frac{2}{45} & \frac{7}{45}\\\frac{2}{9} & - \frac{2}{9}\end{array}\right]$
$\left[\begin{array}{cc}3 & 2\\2 & 3\\2 & -2\end{array}\right]\cdot \left[\begin{array}{cc}\frac{17}{225} & - \frac{8}{225}\\- \frac{8}{225} & \frac{17}{225}\end{array}\right] = \left[\begin{array}{cc}\frac{7}{45} & \frac{2}{45}\\\frac{2}{45} & \frac{7}{45}\\\frac{2}{9} & - \frac{2}{9}\end{array}\right]\approx \left[\begin{array}{cc}0.155555555555556 & 0.044444444444444\\0.044444444444444 & 0.155555555555556\\0.222222222222222 & -0.222222222222222\end{array}\right]$A