# $\left[\begin{array}{ccc}3 & 2 & 2\\2 & 3 & -2\end{array}\right]\cdot \left[\begin{array}{cc}3 & 2\\2 & 3\\2 & -2\end{array}\right]$

A calculadora multiplicará a matriz $2$ x $3$ $\left[\begin{array}{ccc}3 & 2 & 2\\2 & 3 & -2\end{array}\right]$ pela matriz $3$ x $2$ $\left[\begin{array}{cc}3 & 2\\2 & 3\\2 & -2\end{array}\right]$, com as etapas mostradas.

$\times$
$\times$

Se a calculadora não calculou algo ou você identificou um erro, ou tem uma sugestão/comentário, escreva nos comentários abaixo.

Calcule $\left[\begin{array}{ccc}3 & 2 & 2\\2 & 3 & -2\end{array}\right]\cdot \left[\begin{array}{cc}3 & 2\\2 & 3\\2 & -2\end{array}\right].$

### Solução

$\left[\begin{array}{ccc}{\color{OrangeRed}3} & {\color{DarkBlue}2} & {\color{Magenta}2}\\{\color{Chartreuse}2} & {\color{Violet}3} & {\color{DarkMagenta}-2}\end{array}\right]\cdot \left[\begin{array}{cc}{\color{DarkMagenta}3} & {\color{OrangeRed}2}\\{\color{Magenta}2} & {\color{Red}3}\\{\color{Chartreuse}2} & {\color{DeepPink}-2}\end{array}\right] = \left[\begin{array}{cc}{\color{OrangeRed}\left(3\right)}\cdot {\color{DarkMagenta}\left(3\right)} + {\color{DarkBlue}\left(2\right)}\cdot {\color{Magenta}\left(2\right)} + {\color{Magenta}\left(2\right)}\cdot {\color{Chartreuse}\left(2\right)} & {\color{OrangeRed}\left(3\right)}\cdot {\color{OrangeRed}\left(2\right)} + {\color{DarkBlue}\left(2\right)}\cdot {\color{Red}\left(3\right)} + {\color{Magenta}\left(2\right)}\cdot {\color{DeepPink}\left(-2\right)}\\{\color{Chartreuse}\left(2\right)}\cdot {\color{DarkMagenta}\left(3\right)} + {\color{Violet}\left(3\right)}\cdot {\color{Magenta}\left(2\right)} + {\color{DarkMagenta}\left(-2\right)}\cdot {\color{Chartreuse}\left(2\right)} & {\color{Chartreuse}\left(2\right)}\cdot {\color{OrangeRed}\left(2\right)} + {\color{Violet}\left(3\right)}\cdot {\color{Red}\left(3\right)} + {\color{DarkMagenta}\left(-2\right)}\cdot {\color{DeepPink}\left(-2\right)}\end{array}\right] = \left[\begin{array}{cc}17 & 8\\8 & 17\end{array}\right]$

### Responder

$\left[\begin{array}{ccc}3 & 2 & 2\\2 & 3 & -2\end{array}\right]\cdot \left[\begin{array}{cc}3 & 2\\2 & 3\\2 & -2\end{array}\right] = \left[\begin{array}{cc}17 & 8\\8 & 17\end{array}\right]$A