Divergência de $$$\left\langle x^{2} y, x y z, y z^{2}\right\rangle$$$

A calculadora encontrará a divergência do campo vetorial $$$\left\langle x^{2} y, x y z, y z^{2}\right\rangle$$$, mostrando os passos.

Calculadoras relacionadas: Calculadora de Derivadas Parciais, Calculadora de Produto Escalar

$$$\langle$$$
,
,
$$$\rangle$$$
$$$($$$
,
,
$$$)$$$
Deixe em branco, se não precisar da divergência em um ponto específico.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Calcule $$$\operatorname{div} \left\langle x^{2} y, x y z, y z^{2}\right\rangle$$$.

Solução

Por definição, $$$\operatorname{div} \left\langle x^{2} y, x y z, y z^{2}\right\rangle = \nabla\cdot \left\langle x^{2} y, x y z, y z^{2}\right\rangle$$$, ou, de forma equivalente, $$$\operatorname{div} \left\langle x^{2} y, x y z, y z^{2}\right\rangle = \left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\rangle\cdot \left\langle x^{2} y, x y z, y z^{2}\right\rangle$$$, onde $$$\cdot$$$ é o operador de produto escalar.

Logo, $$$\operatorname{div} \left\langle x^{2} y, x y z, y z^{2}\right\rangle = \frac{\partial}{\partial x} \left(x^{2} y\right) + \frac{\partial}{\partial y} \left(x y z\right) + \frac{\partial}{\partial z} \left(y z^{2}\right).$$$

Calcule a derivada parcial do componente 1 em relação a $$$x$$$: $$$\frac{\partial}{\partial x} \left(x^{2} y\right) = 2 x y$$$ (para ver as etapas, consulte derivative calculator).

Calcule a derivada parcial do componente 2 em relação a $$$y$$$: $$$\frac{\partial}{\partial y} \left(x y z\right) = x z$$$ (para ver as etapas, consulte derivative calculator).

Calcule a derivada parcial do componente 3 em relação a $$$z$$$: $$$\frac{\partial}{\partial z} \left(y z^{2}\right) = 2 y z$$$ (para ver as etapas, consulte derivative calculator).

Agora, basta somar as expressões acima para obter a divergência: $$$\operatorname{div} \left\langle x^{2} y, x y z, y z^{2}\right\rangle = 2 x y + x z + 2 y z$$$.

Resposta

$$$\operatorname{div} \left\langle x^{2} y, x y z, y z^{2}\right\rangle = 2 x y + x z + 2 y z$$$A


Please try a new game Rotatly