Gire o site $$$\left(3 \sqrt{2}, - \frac{\sqrt{2}}{4}\right)$$$ em $$$45^{\circ}$$$ no sentido anti-horário em torno de $$$\left(0, 0\right)$$$

A calculadora girará o ponto $$$\left(3 \sqrt{2}, - \frac{\sqrt{2}}{4}\right)$$$ pelo ângulo $$$45^{\circ}$$$ no sentido anti-horário em torno do ponto $$$\left(0, 0\right)$$$, com as etapas mostradas.
$$$($$$
,
$$$)$$$
$$$($$$
,
$$$)$$$
A origem é o ponto $$$\left(0, 0\right)$$$.

Se a calculadora não computou algo ou você identificou um erro, ou se tiver uma sugestão/feedback, entre em contato conosco.

Sua contribuição

Gire $$$\left(3 \sqrt{2}, - \frac{\sqrt{2}}{4}\right)$$$ pelo ângulo $$$45^{\circ}$$$ no sentido anti-horário em torno de $$$\left(0, 0\right)$$$.

Solução

A rotação de um ponto $$$\left(x, y\right)$$$ em torno da origem pelo ângulo $$$\theta$$$ no sentido anti-horário dará origem a um novo ponto $$$\left(x \cos{\left(\theta \right)} - y \sin{\left(\theta \right)}, x \sin{\left(\theta \right)} + y \cos{\left(\theta \right)}\right)$$$.

Em nosso caso, $$$x = 3 \sqrt{2}$$$, $$$y = - \frac{\sqrt{2}}{4}$$$, e $$$\theta = 45^{\circ}$$$.

Portanto, o novo ponto é $$$\left(3 \sqrt{2} \cos{\left(45^{\circ} \right)} - - \frac{\sqrt{2}}{4} \sin{\left(45^{\circ} \right)}, 3 \sqrt{2} \sin{\left(45^{\circ} \right)} + - \frac{\sqrt{2}}{4} \cos{\left(45^{\circ} \right)}\right) = \left(\frac{13}{4}, \frac{11}{4}\right).$$$

Resposta

O novo ponto é $$$\left(\frac{13}{4}, \frac{11}{4}\right) = \left(3.25, 2.75\right)$$$A.