Pseudoinverse van $$$\left[\begin{array}{cc}2 & 1\\3 & 4\end{array}\right]$$$
Gerelateerde rekenmachine: Rekenmachine voor de inverse van een matrix
Uw invoer
Bepaal de Moore-Penrose-pseudoinverse van $$$\left[\begin{array}{cc}2 & 1\\3 & 4\end{array}\right]$$$.
Oplossing
De pseudoinverse van een matrix $$$A$$$ is $$$A^{+} = A^{T} \left(A A^{T}\right)^{-1}$$$.
Bepaal de getransponeerde van de matrix: $$$\left[\begin{array}{cc}2 & 1\\3 & 4\end{array}\right]^{T} = \left[\begin{array}{cc}2 & 3\\1 & 4\end{array}\right]$$$ (voor de stappen, zie matrix transpose calculator).
Vermenigvuldig de oorspronkelijke matrix met zijn getransponeerde:
$$$\left[\begin{array}{cc}2 & 1\\3 & 4\end{array}\right]\cdot \left[\begin{array}{cc}2 & 3\\1 & 4\end{array}\right] = \left[\begin{array}{cc}5 & 10\\10 & 25\end{array}\right]$$$ (voor de stappen, zie rekenmachine voor matrixvermenigvuldiging.)
Vind de inverse matrix: $$$\left[\begin{array}{cc}5 & 10\\10 & 25\end{array}\right]^{-1} = \left[\begin{array}{cc}1 & - \frac{2}{5}\\- \frac{2}{5} & \frac{1}{5}\end{array}\right]$$$ (voor de stappen, zie matrix inverse calculator).
Vermenigvuldig ten slotte de matrices:
$$$\left[\begin{array}{cc}2 & 3\\1 & 4\end{array}\right]\cdot \left[\begin{array}{cc}1 & - \frac{2}{5}\\- \frac{2}{5} & \frac{1}{5}\end{array}\right] = \left[\begin{array}{cc}\frac{4}{5} & - \frac{1}{5}\\- \frac{3}{5} & \frac{2}{5}\end{array}\right]$$$ (voor de stappen, zie rekenmachine voor matrixvermenigvuldiging.)
Antwoord
$$$\left[\begin{array}{cc}2 & 1\\3 & 4\end{array}\right]^{+} = \left[\begin{array}{cc}\frac{4}{5} & - \frac{1}{5}\\- \frac{3}{5} & \frac{2}{5}\end{array}\right] = \left[\begin{array}{cc}0.8 & -0.2\\-0.6 & 0.4\end{array}\right]$$$A