Eigenwaarden en eigenvectoren van $$$\left[\begin{array}{cc}\frac{5}{2} & \frac{3}{2}\\- \frac{3}{2} & - \frac{1}{2}\end{array}\right]$$$
Gerelateerde rekenmachine: Rekenmachine voor de karakteristieke polynoom
Uw invoer
Bepaal de eigenwaarden en eigenvectoren van $$$\left[\begin{array}{cc}\frac{5}{2} & \frac{3}{2}\\- \frac{3}{2} & - \frac{1}{2}\end{array}\right]$$$.
Oplossing
Begin met het vormen van een nieuwe matrix door $$$\lambda$$$ af te trekken van de diagonaalelementen van de gegeven matrix: $$$\left[\begin{array}{cc}\frac{5}{2} - \lambda & \frac{3}{2}\\- \frac{3}{2} & - \lambda - \frac{1}{2}\end{array}\right]$$$.
De determinant van de verkregen matrix is $$$\left(\lambda - 1\right)^{2}$$$ (voor de stappen, zie determinantencalculator).
Los de vergelijking $$$\left(\lambda - 1\right)^{2} = 0$$$ op.
De wortels zijn $$$\lambda_{1} = 1$$$, $$$\lambda_{2} = 1$$$ (voor de stappen, zie vergelijkingsoplosser).
Dit zijn de eigenwaarden.
Bepaal vervolgens de eigenvectoren.
$$$\lambda = 1$$$
$$$\left[\begin{array}{cc}\frac{5}{2} - \lambda & \frac{3}{2}\\- \frac{3}{2} & - \lambda - \frac{1}{2}\end{array}\right] = \left[\begin{array}{cc}\frac{3}{2} & \frac{3}{2}\\- \frac{3}{2} & - \frac{3}{2}\end{array}\right]$$$
De nulruimte van deze matrix is $$$\left\{\left[\begin{array}{c}-1\\1\end{array}\right]\right\}$$$ (voor de stappen, zie nulruimte-calculator).
Dit is de eigenvector.
Antwoord
Eigenwaarde: $$$1$$$A, multipliciteit: $$$2$$$A, eigenvectoren: $$$\left[\begin{array}{c}-1\\1\end{array}\right]$$$A.