$$$\frac{1}{2}\cdot \left\langle 2 \cos{\left(t \right)}, - 2 \sin{\left(t \right)}, 0\right\rangle$$$
사용자 입력
$$$\frac{1}{2}\cdot \left\langle 2 \cos{\left(t \right)}, - 2 \sin{\left(t \right)}, 0\right\rangle$$$을(를) 계산하세요.
풀이
벡터의 각 성분에 스칼라를 곱하십시오:
$$${\color{DeepPink}\left(\frac{1}{2}\right)}\cdot \left\langle 2 \cos{\left(t \right)}, - 2 \sin{\left(t \right)}, 0\right\rangle = \left\langle {\color{DeepPink}\left(\frac{1}{2}\right)}\cdot \left(2 \cos{\left(t \right)}\right), {\color{DeepPink}\left(\frac{1}{2}\right)}\cdot \left(- 2 \sin{\left(t \right)}\right), {\color{DeepPink}\left(\frac{1}{2}\right)}\cdot \left(0\right)\right\rangle = \left\langle \cos{\left(t \right)}, - \sin{\left(t \right)}, 0\right\rangle$$$
정답
$$$\frac{1}{2}\cdot \left\langle 2 \cos{\left(t \right)}, - 2 \sin{\left(t \right)}, 0\right\rangle = \left\langle \cos{\left(t \right)}, - \sin{\left(t \right)}, 0\right\rangle$$$A