$$$\frac{1}{2 \sqrt{t^{2} + 1}}\cdot \left\langle 2 t, 2\right\rangle$$$
사용자 입력
$$$\frac{1}{2 \sqrt{t^{2} + 1}}\cdot \left\langle 2 t, 2\right\rangle$$$을(를) 계산하세요.
풀이
벡터의 각 성분에 스칼라를 곱하십시오:
$$${\color{Green}\left(\frac{1}{2 \sqrt{t^{2} + 1}}\right)}\cdot \left\langle 2 t, 2\right\rangle = \left\langle {\color{Green}\left(\frac{1}{2 \sqrt{t^{2} + 1}}\right)}\cdot \left(2 t\right), {\color{Green}\left(\frac{1}{2 \sqrt{t^{2} + 1}}\right)}\cdot \left(2\right)\right\rangle = \left\langle \frac{t}{\sqrt{t^{2} + 1}}, \frac{1}{\sqrt{t^{2} + 1}}\right\rangle$$$
정답
$$$\frac{1}{2 \sqrt{t^{2} + 1}}\cdot \left\langle 2 t, 2\right\rangle = \left\langle \frac{t}{\sqrt{t^{2} + 1}}, \frac{1}{\sqrt{t^{2} + 1}}\right\rangle = \left\langle \frac{t}{\left(t^{2} + 1\right)^{0.5}}, \left(t^{2} + 1\right)^{-0.5}\right\rangle$$$A
Please try a new game Rotatly