$$$\left\langle 4 \cos{\left(2 t \right)}, - 4 \sin{\left(2 t \right)}, -8\right\rangle$$$의 크기
사용자 입력
벡터 $$$\mathbf{\vec{u}} = \left\langle 4 \cos{\left(2 t \right)}, - 4 \sin{\left(2 t \right)}, -8\right\rangle$$$의 크기(길이)를 구하시오.
풀이
벡터의 크기는 $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\sum_{i=1}^{n} \left|{u_{i}}\right|^{2}}$$$로 주어진다.
좌표 성분들의 절댓값 제곱의 합은 $$$\left|{4 \cos{\left(2 t \right)}}\right|^{2} + \left|{- 4 \sin{\left(2 t \right)}}\right|^{2} + \left|{-8}\right|^{2} = 16 \sin^{2}{\left(2 t \right)} + 16 \cos^{2}{\left(2 t \right)} + 64$$$입니다.
따라서 벡터의 크기는 $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{16 \sin^{2}{\left(2 t \right)} + 16 \cos^{2}{\left(2 t \right)} + 64} = 4 \sqrt{5}$$$입니다.
정답
크기는 $$$4 \sqrt{5}\approx 8.944271909999159$$$A입니다.
Please try a new game Rotatly