$$$\left\langle 2, \frac{\sqrt{2} \left(1 - 2 t\right) e^{- t}}{4 t^{\frac{3}{2}}}, \frac{\sqrt{2} \left(2 t + 1\right) e^{t}}{4 t^{\frac{3}{2}}}\right\rangle$$$의 크기

계산기는 단계별 풀이와 함께 벡터 $$$\left\langle 2, \frac{\sqrt{2} \left(1 - 2 t\right) e^{- t}}{4 t^{\frac{3}{2}}}, \frac{\sqrt{2} \left(2 t + 1\right) e^{t}}{4 t^{\frac{3}{2}}}\right\rangle$$$의 크기(길이, 노름)를 구합니다.
$$$\langle$$$ $$$\rangle$$$
쉼표로 구분.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

벡터 $$$\mathbf{\vec{u}} = \left\langle 2, \frac{\sqrt{2} \left(1 - 2 t\right) e^{- t}}{4 t^{\frac{3}{2}}}, \frac{\sqrt{2} \left(2 t + 1\right) e^{t}}{4 t^{\frac{3}{2}}}\right\rangle$$$의 크기(길이)를 구하시오.

풀이

벡터의 크기는 $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\sum_{i=1}^{n} \left|{u_{i}}\right|^{2}}$$$로 주어진다.

좌표 성분들의 절댓값 제곱의 합은 $$$\left|{2}\right|^{2} + \left|{\frac{\sqrt{2} \left(1 - 2 t\right) e^{- t}}{4 t^{\frac{3}{2}}}}\right|^{2} + \left|{\frac{\sqrt{2} \left(2 t + 1\right) e^{t}}{4 t^{\frac{3}{2}}}}\right|^{2} = \frac{\left(2 t - 1\right)^{2} e^{- 2 t}}{8 \left|{t^{\frac{3}{2}}}\right|^{2}} + \frac{\left(2 t + 1\right)^{2} e^{2 t}}{8 \left|{t^{\frac{3}{2}}}\right|^{2}} + 4$$$입니다.

따라서 벡터의 크기는 $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\frac{\left(2 t - 1\right)^{2} e^{- 2 t}}{8 \left|{t^{\frac{3}{2}}}\right|^{2}} + \frac{\left(2 t + 1\right)^{2} e^{2 t}}{8 \left|{t^{\frac{3}{2}}}\right|^{2}} + 4} = \frac{\sqrt{64 t^{4} e^{2 t} + 2 \left(2 t - 1\right)^{2} \left|{t}\right| + 2 \left(2 t + 1\right)^{2} e^{4 t} \left|{t}\right|} e^{- t}}{4 t^{2}}$$$입니다.

정답

크기는 $$$\frac{\sqrt{64 t^{4} e^{2 t} + 2 \left(2 t - 1\right)^{2} \left|{t}\right| + 2 \left(2 t + 1\right)^{2} e^{4 t} \left|{t}\right|} e^{- t}}{4 t^{2}} = \frac{0.25 \left(64 t^{4} e^{2 t} + 2 \left(2 t - 1\right)^{2} \left|{t}\right| + 2 \left(2 t + 1\right)^{2} e^{4 t} \left|{t}\right|\right)^{0.5} e^{- t}}{t^{2}}$$$A입니다.


Please try a new game Rotatly