편도함수 계산기
편도함수를 단계별로 계산
이 온라인 계산기는 풀이 과정을 보여 주면서 함수의 편미분을 계산합니다. 적분의 순서는 임의로 지정할 수 있습니다.
Solution
Your input: find $$$\frac{\partial}{\partial y}\left(x^{2} + y^{2} + z^{2} - 14\right)$$$
The derivative of a sum/difference is the sum/difference of derivatives:
$${\color{red}{\frac{\partial}{\partial y}\left(x^{2} + y^{2} + z^{2} - 14\right)}}={\color{red}{\left(- \frac{\partial}{\partial y}\left(14\right) + \frac{\partial}{\partial y}\left(x^{2}\right) + \frac{\partial}{\partial y}\left(y^{2}\right) + \frac{\partial}{\partial y}\left(z^{2}\right)\right)}}$$The derivative of a constant is 0:
$${\color{red}{\frac{\partial}{\partial y}\left(z^{2}\right)}} - \frac{\partial}{\partial y}\left(14\right) + \frac{\partial}{\partial y}\left(x^{2}\right) + \frac{\partial}{\partial y}\left(y^{2}\right)={\color{red}{\left(0\right)}} - \frac{\partial}{\partial y}\left(14\right) + \frac{\partial}{\partial y}\left(x^{2}\right) + \frac{\partial}{\partial y}\left(y^{2}\right)$$The derivative of a constant is 0:
$$- {\color{red}{\frac{\partial}{\partial y}\left(14\right)}} + \frac{\partial}{\partial y}\left(x^{2}\right) + \frac{\partial}{\partial y}\left(y^{2}\right)=- {\color{red}{\left(0\right)}} + \frac{\partial}{\partial y}\left(x^{2}\right) + \frac{\partial}{\partial y}\left(y^{2}\right)$$The derivative of a constant is 0:
$${\color{red}{\frac{\partial}{\partial y}\left(x^{2}\right)}} + \frac{\partial}{\partial y}\left(y^{2}\right)={\color{red}{\left(0\right)}} + \frac{\partial}{\partial y}\left(y^{2}\right)$$Apply the power rule $$$\frac{\partial}{\partial y} \left(y^{n} \right)=n\cdot y^{-1+n}$$$ with $$$n=2$$$:
$${\color{red}{\frac{\partial}{\partial y}\left(y^{2}\right)}}={\color{red}{\left(2 y^{-1 + 2}\right)}}=2 y$$Thus, $$$\frac{\partial}{\partial y}\left(x^{2} + y^{2} + z^{2} - 14\right)=2 y$$$
Answer: $$$\frac{\partial}{\partial y}\left(x^{2} + y^{2} + z^{2} - 14\right)=2 y$$$
Please try a new game Rotatly