$$$\sum_{n=0}^{\infty} \left(\frac{19}{20}\right)^{n}$$$

계산기는 $$$\sum_{n=0}^{\infty} \left(\frac{19}{20}\right)^{n}$$$의 합을 구하거나 수렴 여부를 판단하고, 단계별 풀이를 제공합니다.
자동 감지를 위해 비워 두세요.
Als je een binomiale coëfficiënt $$$C(n,k) = {\binom{n}{k}}$$$ nodig hebt, typ binomial(n,k).
Als je een faculteit $$$n!$$$ nodig hebt, typ factorial(n).

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\sum_{n=0}^{\infty} \left(\frac{19}{20}\right)^{n}$$$을(를) 구하시오.

풀이

$$$\sum_{n=0}^{\infty} \left(\frac{19}{20}\right)^{n}$$$ is an infinite geometric series with the first term $$$b=1$$$ and the common ratio $$$q=\frac{19}{20}$$$.

By the ratio test, it is convergent.

Its sum is $$$S=\frac{b}{1-q}=20$$$.

Therefore,

$${\color{red}{\left(\sum_{n=0}^{\infty} \left(\frac{19}{20}\right)^{n}\right)}}={\color{red}{\left(20\right)}}$$

Hence,

$$\sum_{n=0}^{\infty} \left(\frac{19}{20}\right)^{n}=20$$

정답

$$$\sum_{n=0}^{\infty} \left(\frac{19}{20}\right)^{n} = 20$$$A


Please try a new game Rotatly