부분분수 분해 계산기
부분분수분해를 단계별로 구하기
이 온라인 계산기는 유리함수의 부분분수 분해를 단계별로 구해 줍니다.
Solution
Your input: perform the partial fraction decomposition of $$$\frac{1}{u^{2} \left(u^{2} + 1\right)}$$$
The form of the partial fraction decomposition is
$$\frac{1}{u^{2} \left(u^{2} + 1\right)}=\frac{A}{u}+\frac{B}{u^{2}}+\frac{C u + D}{u^{2} + 1}$$
Write the right-hand side as a single fraction:
$$\frac{1}{u^{2} \left(u^{2} + 1\right)}=\frac{u^{2} \left(C u + D\right) + u \left(u^{2} + 1\right) A + \left(u^{2} + 1\right) B}{u^{2} \left(u^{2} + 1\right)}$$
The denominators are equal, so we require the equality of the numerators:
$$1=u^{2} \left(C u + D\right) + u \left(u^{2} + 1\right) A + \left(u^{2} + 1\right) B$$
Expand the right-hand side:
$$1=u^{3} A + u^{3} C + u^{2} B + u^{2} D + u A + B$$
Collect up the like terms:
$$1=u^{3} \left(A + C\right) + u^{2} \left(B + D\right) + u A + B$$
The coefficients near the like terms should be equal, so the following system is obtained:
$$\begin{cases} A + C = 0\\B + D = 0\\A = 0\\B = 1 \end{cases}$$
Solving it (for steps, see system of equations calculator), we get that $$$A=0$$$, $$$B=1$$$, $$$C=0$$$, $$$D=-1$$$
Therefore,
$$\frac{1}{u^{2} \left(u^{2} + 1\right)}=\frac{0}{u}+\frac{1}{u^{2}}+\frac{-1}{u^{2} + 1}=\frac{1}{u^{2}}+\frac{-1}{u^{2} + 1}$$
Answer: $$$\frac{1}{u^{2} \left(u^{2} + 1\right)}=\frac{1}{u^{2}}+\frac{-1}{u^{2} + 1}$$$