$$$\sqrt{32 + 4 \sqrt{17} i}$$$을(를) 구하시오
사용자 입력
$$$\sqrt{32 + 4 \sqrt{17} i}$$$을(를) 구하시오.
풀이
$$$32 + 4 \sqrt{17} i$$$의 극형식은 $$$36 \left(\cos{\left(\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)} \right)} + i \sin{\left(\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)} \right)}\right)$$$입니다(풀이 단계는 극형식 계산기를 참조하세요).
드무아브르의 공식에 따르면, 복소수 $$$r \left(\cos{\left(\theta \right)} + i \sin{\left(\theta \right)}\right)$$$의 모든 $$$n$$$제곱근은 $$$r^{\frac{1}{n}} \left(\cos{\left(\frac{\theta + 2 \pi k}{n} \right)} + i \sin{\left(\frac{\theta + 2 \pi k}{n} \right)}\right)$$$, $$$k=\overline{0..n-1}$$$로 주어진다.
다음이 성립한다: $$$r = 36$$$, $$$\theta = \operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)}$$$, 및 $$$n = 2$$$.
- $$$k = 0$$$: $$$\sqrt{36} \left(\cos{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)} + 2\cdot \pi\cdot 0}{2} \right)} + i \sin{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)} + 2\cdot \pi\cdot 0}{2} \right)}\right) = 6 \left(\cos{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)}}{2} \right)} + i \sin{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)}}{2} \right)}\right) = 6 \cos{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)}}{2} \right)} + 6 i \sin{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)}}{2} \right)}$$$
- $$$k = 1$$$: $$$\sqrt{36} \left(\cos{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)} + 2\cdot \pi\cdot 1}{2} \right)} + i \sin{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)} + 2\cdot \pi\cdot 1}{2} \right)}\right) = 6 \left(\cos{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)}}{2} + \pi \right)} + i \sin{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)}}{2} + \pi \right)}\right) = - 6 \cos{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)}}{2} \right)} - 6 i \sin{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)}}{2} \right)}$$$
정답
$$$\sqrt{32 + 4 \sqrt{17} i} = 6 \cos{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)}}{2} \right)} + 6 i \sin{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)}}{2} \right)}\approx 5.8309518948453 + 1.414213562373095 i$$$A
$$$\sqrt{32 + 4 \sqrt{17} i} = - 6 \cos{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)}}{2} \right)} - 6 i \sin{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{17}}{8} \right)}}{2} \right)}\approx -5.8309518948453 - 1.414213562373095 i$$$A