$$$\sqrt[4]{1}$$$을(를) 구하시오
사용자 입력
$$$\sqrt[4]{1}$$$을(를) 구하시오.
풀이
$$$1$$$의 극형식은 $$$\cos{\left(0 \right)} + i \sin{\left(0 \right)}$$$입니다(풀이 단계는 극형식 계산기를 참조하세요).
드무아브르의 공식에 따르면, 복소수 $$$r \left(\cos{\left(\theta \right)} + i \sin{\left(\theta \right)}\right)$$$의 모든 $$$n$$$제곱근은 $$$r^{\frac{1}{n}} \left(\cos{\left(\frac{\theta + 2 \pi k}{n} \right)} + i \sin{\left(\frac{\theta + 2 \pi k}{n} \right)}\right)$$$, $$$k=\overline{0..n-1}$$$로 주어진다.
다음이 성립한다: $$$r = 1$$$, $$$\theta = 0$$$, 및 $$$n = 4$$$.
- $$$k = 0$$$: $$$\sqrt[4]{1} \left(\cos{\left(\frac{0 + 2\cdot \pi\cdot 0}{4} \right)} + i \sin{\left(\frac{0 + 2\cdot \pi\cdot 0}{4} \right)}\right) = \cos{\left(0 \right)} + i \sin{\left(0 \right)} = 1$$$
- $$$k = 1$$$: $$$\sqrt[4]{1} \left(\cos{\left(\frac{0 + 2\cdot \pi\cdot 1}{4} \right)} + i \sin{\left(\frac{0 + 2\cdot \pi\cdot 1}{4} \right)}\right) = \cos{\left(\frac{\pi}{2} \right)} + i \sin{\left(\frac{\pi}{2} \right)} = i$$$
- $$$k = 2$$$: $$$\sqrt[4]{1} \left(\cos{\left(\frac{0 + 2\cdot \pi\cdot 2}{4} \right)} + i \sin{\left(\frac{0 + 2\cdot \pi\cdot 2}{4} \right)}\right) = \cos{\left(\pi \right)} + i \sin{\left(\pi \right)} = -1$$$
- $$$k = 3$$$: $$$\sqrt[4]{1} \left(\cos{\left(\frac{0 + 2\cdot \pi\cdot 3}{4} \right)} + i \sin{\left(\frac{0 + 2\cdot \pi\cdot 3}{4} \right)}\right) = \cos{\left(\frac{3 \pi}{2} \right)} + i \sin{\left(\frac{3 \pi}{2} \right)} = - i$$$
정답
$$$\sqrt[4]{1} = 1$$$A
$$$\sqrt[4]{1} = i$$$A
$$$\sqrt[4]{1} = -1$$$A
$$$\sqrt[4]{1} = - i$$$A
Please try a new game Rotatly