합성나눗셈 계산기

조립제법을 단계별로 수행하세요

계산기는 조립제법을 사용하여 다항식을 이항식으로 나누며, 단계별 과정을 보여 줍니다.

관련 계산기: 다항식 장제법 계산기

Divide (dividend):

By (divisor):

A binomial (of the form `ax+b`).

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: find $$$\frac{2 x^{3} + x^{2} - 13 x + 6}{x + 1}$$$ using synthetic division.

Write the problem in a division-like format.

To do this:

  • Take the constant term of the divisor with the opposite sign and write it to the left.
  • Write the coefficients of the dividend to the right.

$$$\begin{array}{c|cccc}&x^{3}&x^{2}&x^{1}&x^{0}\\-1&2&1&-13&6\\&&\\\hline&\end{array}$$$

Step 1

Write down the first coefficient without changes:

$$$\begin{array}{c|rrrr}-1&\color{DeepPink}{2}&1&-13&6\\&&\\\hline&\color{DeepPink}{2}\end{array}$$$

Step 2

Multiply the entry in the left part of the table by the last entry in the result row (under the horizontal line).

Add the obtained result to the next coefficient of the dividend, and write down the sum.

$$$\begin{array}{c|rrrr}\color{Magenta}{-1}&2&\color{Crimson}{1}&-13&6\\&&\left(\color{Magenta}{-1}\right) \cdot \color{DeepPink}{2}=\color{Red}{-2}\\\hline&\color{DeepPink}{2}&\color{Crimson}{1}+\left(\color{Red}{-2}\right)=\color{Green}{-1}\end{array}$$$

Step 3

Multiply the entry in the left part of the table by the last entry in the result row (under the horizontal line).

Add the obtained result to the next coefficient of the dividend, and write down the sum.

$$$\begin{array}{c|rrrr}\color{Magenta}{-1}&2&1&\color{Chocolate}{-13}&6\\&&-2&\left(\color{Magenta}{-1}\right) \cdot \left(\color{Crimson}{-1}\right)=\color{Red}{1}\\\hline&2&\color{Crimson}{-1}&\left(\color{Chocolate}{-13}\right)+\color{Red}{1}=\color{Green}{-12}\end{array}$$$

Step 4

Multiply the entry in the left part of the table by the last entry in the result row (under the horizontal line).

Add the obtained result to the next coefficient of the dividend, and write down the sum.

$$$\begin{array}{c|rrrr}\color{Magenta}{-1}&2&1&-13&\color{DarkMagenta}{6}\\&&-2&1&\left(\color{Magenta}{-1}\right) \cdot \left(\color{Chocolate}{-12}\right)=\color{Red}{12}\\\hline&2&-1&\color{Chocolate}{-12}&\color{DarkMagenta}{6}+\color{Red}{12}=\color{Green}{18}\end{array}$$$

We have completed the table and have obtained the following resulting coefficients: $$$2, -1, -12, 18$$$.

All the coefficients except the last one are the coefficients of the quotient, the last coefficient is the remainder.

Thus, the quotient is $$$2 x^{2}- x-12$$$, and the remainder is $$$18$$$.

Therefore, $$$\frac{2 x^{3} + x^{2} - 13 x + 6}{x + 1}=2 x^{2} - x - 12+\frac{18}{x + 1}$$$

Answer: $$$\frac{2 x^{3} + x^{2} - 13 x + 6}{x + 1}=2 x^{2} - x - 12+\frac{18}{x + 1}$$$


Please try a new game Rotatly