이차방정식 계산기
이차방정식을 단계별로 풀기
Solution
Your input: solve the quadratic equation $$$4 y^{2} - 5 y - 6 = 0$$$ by using quadratic formula.
The standard quadratic equation has the form $$$ay^2+by+c=0$$$.
In our case, $$$a=4$$$, $$$b=-5$$$, $$$c=-6$$$.
Now, find the discriminant using the formula $$$D=b^2-4ac$$$: $$$D=\left(-5\right)^2-4\cdot 4 \cdot \left(-6\right)=121$$$.
Find the roots of the equation using the formulas $$$y_1=\frac{-b-\sqrt{D}}{2a}$$$ and $$$y_2=\frac{-b+\sqrt{D}}{2a}$$$
$$$y_1=\frac{-\left(-5\right)-\sqrt{121}}{2\cdot 4}=- \frac{3}{4}$$$ and $$$y_2=\frac{-\left(-5\right)+\sqrt{121}}{2\cdot 4}=2$$$
Answer: $$$y_1=- \frac{3}{4}$$$; $$$y_2=2$$$
Please try a new game Rotatly