$$$\mathbf{\vec{r}\left(t\right)} = \left\langle \sin^{3}{\left(t \right)}, \cos^{3}{\left(t \right)}, \sin^{2}{\left(t \right)}\right\rangle$$$の単位接ベクトル
関連する計算機: 単位法線ベクトル計算機, 単位従法線ベクトル計算機
入力内容
$$$\mathbf{\vec{r}\left(t\right)} = \left\langle \sin^{3}{\left(t \right)}, \cos^{3}{\left(t \right)}, \sin^{2}{\left(t \right)}\right\rangle$$$ の単位接ベクトルを求めよ。
解答
単位接ベクトルを求めるには、$$$\mathbf{\vec{r}\left(t\right)}$$$(接ベクトル)を微分し、その後それを正規化(単位ベクトルにする)します。
$$$\mathbf{\vec{r}^{\prime}\left(t\right)} = \left\langle 3 \sin^{2}{\left(t \right)} \cos{\left(t \right)}, - 3 \sin{\left(t \right)} \cos^{2}{\left(t \right)}, \sin{\left(2 t \right)}\right\rangle$$$(手順についてはderivative calculatorを参照してください)。
次のベクトルの単位ベクトルを求めてください: $$$\mathbf{\vec{T}\left(t\right)} = \left\langle \frac{6 \sqrt{26} \sin^{2}{\left(t \right)} \cos{\left(t \right)}}{13 \sqrt{1 - \cos{\left(4 t \right)}}}, - \frac{6 \sqrt{26} \sin{\left(t \right)} \cos^{2}{\left(t \right)}}{13 \sqrt{1 - \cos{\left(4 t \right)}}}, \frac{2 \sqrt{26} \sin{\left(2 t \right)}}{13 \sqrt{1 - \cos{\left(4 t \right)}}}\right\rangle$$$ (手順は 単位ベクトル計算機 を参照)。
解答
単位接ベクトルは $$$\mathbf{\vec{T}\left(t\right)} = \left\langle \frac{6 \sqrt{26} \sin^{2}{\left(t \right)} \cos{\left(t \right)}}{13 \sqrt{1 - \cos{\left(4 t \right)}}}, - \frac{6 \sqrt{26} \sin{\left(t \right)} \cos^{2}{\left(t \right)}}{13 \sqrt{1 - \cos{\left(4 t \right)}}}, \frac{2 \sqrt{26} \sin{\left(2 t \right)}}{13 \sqrt{1 - \cos{\left(4 t \right)}}}\right\rangle$$$A です。