$$$x^{2} e^{- \frac{x}{2}}$$$の積分

この計算機は、手順を示しながら$$$x^{2} e^{- \frac{x}{2}}$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int x^{2} e^{- \frac{x}{2}}\, dx$$$ を求めよ。

解答

積分 $$$\int{x^{2} e^{- \frac{x}{2}} d x}$$$ には、部分積分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$を用いてください。

$$$\operatorname{u}=x^{2}$$$$$$\operatorname{dv}=e^{- \frac{x}{2}} dx$$$ とする。

したがって、$$$\operatorname{du}=\left(x^{2}\right)^{\prime }dx=2 x dx$$$(手順は»を参照)および$$$\operatorname{v}=\int{e^{- \frac{x}{2}} d x}=- 2 e^{- \frac{x}{2}}$$$(手順は»を参照)。

したがって、

$${\color{red}{\int{x^{2} e^{- \frac{x}{2}} d x}}}={\color{red}{\left(x^{2} \cdot \left(- 2 e^{- \frac{x}{2}}\right)-\int{\left(- 2 e^{- \frac{x}{2}}\right) \cdot 2 x d x}\right)}}={\color{red}{\left(- 2 x^{2} e^{- \frac{x}{2}} - \int{\left(- 4 x e^{- \frac{x}{2}}\right)d x}\right)}}$$

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=-4$$$$$$f{\left(x \right)} = x e^{- \frac{x}{2}}$$$ に対して適用する:

$$- 2 x^{2} e^{- \frac{x}{2}} - {\color{red}{\int{\left(- 4 x e^{- \frac{x}{2}}\right)d x}}} = - 2 x^{2} e^{- \frac{x}{2}} - {\color{red}{\left(- 4 \int{x e^{- \frac{x}{2}} d x}\right)}}$$

積分 $$$\int{x e^{- \frac{x}{2}} d x}$$$ には、部分積分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$を用いてください。

$$$\operatorname{u}=x$$$$$$\operatorname{dv}=e^{- \frac{x}{2}} dx$$$ とする。

したがって、$$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$(手順は»を参照)および$$$\operatorname{v}=\int{e^{- \frac{x}{2}} d x}=- 2 e^{- \frac{x}{2}}$$$(手順は»を参照)。

この積分は次のように書き換えられる

$$- 2 x^{2} e^{- \frac{x}{2}} + 4 {\color{red}{\int{x e^{- \frac{x}{2}} d x}}}=- 2 x^{2} e^{- \frac{x}{2}} + 4 {\color{red}{\left(x \cdot \left(- 2 e^{- \frac{x}{2}}\right)-\int{\left(- 2 e^{- \frac{x}{2}}\right) \cdot 1 d x}\right)}}=- 2 x^{2} e^{- \frac{x}{2}} + 4 {\color{red}{\left(- 2 x e^{- \frac{x}{2}} - \int{\left(- 2 e^{- \frac{x}{2}}\right)d x}\right)}}$$

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=-2$$$$$$f{\left(x \right)} = e^{- \frac{x}{2}}$$$ に対して適用する:

$$- 2 x^{2} e^{- \frac{x}{2}} - 8 x e^{- \frac{x}{2}} - 4 {\color{red}{\int{\left(- 2 e^{- \frac{x}{2}}\right)d x}}} = - 2 x^{2} e^{- \frac{x}{2}} - 8 x e^{- \frac{x}{2}} - 4 {\color{red}{\left(- 2 \int{e^{- \frac{x}{2}} d x}\right)}}$$

$$$u=- \frac{x}{2}$$$ とする。

すると $$$du=\left(- \frac{x}{2}\right)^{\prime }dx = - \frac{dx}{2}$$$(手順は»で確認できます)、$$$dx = - 2 du$$$ となります。

したがって、

$$- 2 x^{2} e^{- \frac{x}{2}} - 8 x e^{- \frac{x}{2}} + 8 {\color{red}{\int{e^{- \frac{x}{2}} d x}}} = - 2 x^{2} e^{- \frac{x}{2}} - 8 x e^{- \frac{x}{2}} + 8 {\color{red}{\int{\left(- 2 e^{u}\right)d u}}}$$

定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=-2$$$$$$f{\left(u \right)} = e^{u}$$$ に対して適用する:

$$- 2 x^{2} e^{- \frac{x}{2}} - 8 x e^{- \frac{x}{2}} + 8 {\color{red}{\int{\left(- 2 e^{u}\right)d u}}} = - 2 x^{2} e^{- \frac{x}{2}} - 8 x e^{- \frac{x}{2}} + 8 {\color{red}{\left(- 2 \int{e^{u} d u}\right)}}$$

指数関数の積分は $$$\int{e^{u} d u} = e^{u}$$$です:

$$- 2 x^{2} e^{- \frac{x}{2}} - 8 x e^{- \frac{x}{2}} - 16 {\color{red}{\int{e^{u} d u}}} = - 2 x^{2} e^{- \frac{x}{2}} - 8 x e^{- \frac{x}{2}} - 16 {\color{red}{e^{u}}}$$

次のことを思い出してください $$$u=- \frac{x}{2}$$$:

$$- 2 x^{2} e^{- \frac{x}{2}} - 8 x e^{- \frac{x}{2}} - 16 e^{{\color{red}{u}}} = - 2 x^{2} e^{- \frac{x}{2}} - 8 x e^{- \frac{x}{2}} - 16 e^{{\color{red}{\left(- \frac{x}{2}\right)}}}$$

したがって、

$$\int{x^{2} e^{- \frac{x}{2}} d x} = - 2 x^{2} e^{- \frac{x}{2}} - 8 x e^{- \frac{x}{2}} - 16 e^{- \frac{x}{2}}$$

簡単化せよ:

$$\int{x^{2} e^{- \frac{x}{2}} d x} = 2 \left(- x^{2} - 4 x - 8\right) e^{- \frac{x}{2}}$$

積分定数を加える:

$$\int{x^{2} e^{- \frac{x}{2}} d x} = 2 \left(- x^{2} - 4 x - 8\right) e^{- \frac{x}{2}}+C$$

解答

$$$\int x^{2} e^{- \frac{x}{2}}\, dx = 2 \left(- x^{2} - 4 x - 8\right) e^{- \frac{x}{2}} + C$$$A


Please try a new game Rotatly