$$$\frac{x}{\left(x + 1\right) \left(x + 2\right)}$$$の積分
関連する計算機: 定積分・広義積分計算機
入力内容
$$$\int \frac{x}{\left(x + 1\right) \left(x + 2\right)}\, dx$$$ を求めよ。
解答
部分分数分解を行う (手順は»で確認できます):
$${\color{red}{\int{\frac{x}{\left(x + 1\right) \left(x + 2\right)} d x}}} = {\color{red}{\int{\left(\frac{2}{x + 2} - \frac{1}{x + 1}\right)d x}}}$$
項別に積分せよ:
$${\color{red}{\int{\left(\frac{2}{x + 2} - \frac{1}{x + 1}\right)d x}}} = {\color{red}{\left(- \int{\frac{1}{x + 1} d x} + \int{\frac{2}{x + 2} d x}\right)}}$$
$$$u=x + 1$$$ とする。
すると $$$du=\left(x + 1\right)^{\prime }dx = 1 dx$$$(手順は»で確認できます)、$$$dx = du$$$ となります。
この積分は次のように書き換えられる
$$\int{\frac{2}{x + 2} d x} - {\color{red}{\int{\frac{1}{x + 1} d x}}} = \int{\frac{2}{x + 2} d x} - {\color{red}{\int{\frac{1}{u} d u}}}$$
$$$\frac{1}{u}$$$ の不定積分は $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$ です:
$$\int{\frac{2}{x + 2} d x} - {\color{red}{\int{\frac{1}{u} d u}}} = \int{\frac{2}{x + 2} d x} - {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
次のことを思い出してください $$$u=x + 1$$$:
$$- \ln{\left(\left|{{\color{red}{u}}}\right| \right)} + \int{\frac{2}{x + 2} d x} = - \ln{\left(\left|{{\color{red}{\left(x + 1\right)}}}\right| \right)} + \int{\frac{2}{x + 2} d x}$$
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=2$$$ と $$$f{\left(x \right)} = \frac{1}{x + 2}$$$ に対して適用する:
$$- \ln{\left(\left|{x + 1}\right| \right)} + {\color{red}{\int{\frac{2}{x + 2} d x}}} = - \ln{\left(\left|{x + 1}\right| \right)} + {\color{red}{\left(2 \int{\frac{1}{x + 2} d x}\right)}}$$
$$$u=x + 2$$$ とする。
すると $$$du=\left(x + 2\right)^{\prime }dx = 1 dx$$$(手順は»で確認できます)、$$$dx = du$$$ となります。
したがって、
$$- \ln{\left(\left|{x + 1}\right| \right)} + 2 {\color{red}{\int{\frac{1}{x + 2} d x}}} = - \ln{\left(\left|{x + 1}\right| \right)} + 2 {\color{red}{\int{\frac{1}{u} d u}}}$$
$$$\frac{1}{u}$$$ の不定積分は $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$ です:
$$- \ln{\left(\left|{x + 1}\right| \right)} + 2 {\color{red}{\int{\frac{1}{u} d u}}} = - \ln{\left(\left|{x + 1}\right| \right)} + 2 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
次のことを思い出してください $$$u=x + 2$$$:
$$- \ln{\left(\left|{x + 1}\right| \right)} + 2 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = - \ln{\left(\left|{x + 1}\right| \right)} + 2 \ln{\left(\left|{{\color{red}{\left(x + 2\right)}}}\right| \right)}$$
したがって、
$$\int{\frac{x}{\left(x + 1\right) \left(x + 2\right)} d x} = - \ln{\left(\left|{x + 1}\right| \right)} + 2 \ln{\left(\left|{x + 2}\right| \right)}$$
積分定数を加える:
$$\int{\frac{x}{\left(x + 1\right) \left(x + 2\right)} d x} = - \ln{\left(\left|{x + 1}\right| \right)} + 2 \ln{\left(\left|{x + 2}\right| \right)}+C$$
解答
$$$\int \frac{x}{\left(x + 1\right) \left(x + 2\right)}\, dx = \left(- \ln\left(\left|{x + 1}\right|\right) + 2 \ln\left(\left|{x + 2}\right|\right)\right) + C$$$A