$$$\tan^{4}{\left(x \right)}$$$の積分

この計算機は、手順を示しながら$$$\tan^{4}{\left(x \right)}$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \tan^{4}{\left(x \right)}\, dx$$$ を求めよ。

解答

$$$u=\tan{\left(x \right)}$$$ とする。

すると $$$x=\operatorname{atan}{\left(u \right)}$$$ および $$$dx=\left(\operatorname{atan}{\left(u \right)}\right)^{\prime }du = \frac{du}{u^{2} + 1}$$$(手順は»で確認できます)。

したがって、

$${\color{red}{\int{\tan^{4}{\left(x \right)} d x}}} = {\color{red}{\int{\frac{u^{4}}{u^{2} + 1} d u}}}$$

分子の次数が分母の次数以上であるため、多項式の長除法を行います(手順は»で確認できます):

$${\color{red}{\int{\frac{u^{4}}{u^{2} + 1} d u}}} = {\color{red}{\int{\left(u^{2} - 1 + \frac{1}{u^{2} + 1}\right)d u}}}$$

項別に積分せよ:

$${\color{red}{\int{\left(u^{2} - 1 + \frac{1}{u^{2} + 1}\right)d u}}} = {\color{red}{\left(- \int{1 d u} + \int{u^{2} d u} + \int{\frac{1}{u^{2} + 1} d u}\right)}}$$

$$$c=1$$$ に対して定数則 $$$\int c\, du = c u$$$ を適用する:

$$\int{u^{2} d u} + \int{\frac{1}{u^{2} + 1} d u} - {\color{red}{\int{1 d u}}} = \int{u^{2} d u} + \int{\frac{1}{u^{2} + 1} d u} - {\color{red}{u}}$$

$$$n=2$$$ を用いて、べき乗の法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:

$$- u + \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{\int{u^{2} d u}}}=- u + \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=- u + \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$

$$$\frac{1}{u^{2} + 1}$$$ の不定積分は $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$ です:

$$\frac{u^{3}}{3} - u + {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}} = \frac{u^{3}}{3} - u + {\color{red}{\operatorname{atan}{\left(u \right)}}}$$

次のことを思い出してください $$$u=\tan{\left(x \right)}$$$:

$$\operatorname{atan}{\left({\color{red}{u}} \right)} - {\color{red}{u}} + \frac{{\color{red}{u}}^{3}}{3} = \operatorname{atan}{\left({\color{red}{\tan{\left(x \right)}}} \right)} - {\color{red}{\tan{\left(x \right)}}} + \frac{{\color{red}{\tan{\left(x \right)}}}^{3}}{3}$$

したがって、

$$\int{\tan^{4}{\left(x \right)} d x} = \frac{\tan^{3}{\left(x \right)}}{3} - \tan{\left(x \right)} + \operatorname{atan}{\left(\tan{\left(x \right)} \right)}$$

簡単化せよ:

$$\int{\tan^{4}{\left(x \right)} d x} = x + \frac{\tan^{3}{\left(x \right)}}{3} - \tan{\left(x \right)}$$

積分定数を加える:

$$\int{\tan^{4}{\left(x \right)} d x} = x + \frac{\tan^{3}{\left(x \right)}}{3} - \tan{\left(x \right)}+C$$

解答

$$$\int \tan^{4}{\left(x \right)}\, dx = \left(x + \frac{\tan^{3}{\left(x \right)}}{3} - \tan{\left(x \right)}\right) + C$$$A


Please try a new game Rotatly