$$$\frac{\sqrt{y}}{2} + \frac{1}{2 \sqrt{y}}$$$の積分
関連する計算機: 定積分・広義積分計算機
入力内容
$$$\int \left(\frac{\sqrt{y}}{2} + \frac{1}{2 \sqrt{y}}\right)\, dy$$$ を求めよ。
解答
項別に積分せよ:
$${\color{red}{\int{\left(\frac{\sqrt{y}}{2} + \frac{1}{2 \sqrt{y}}\right)d y}}} = {\color{red}{\left(\int{\frac{1}{2 \sqrt{y}} d y} + \int{\frac{\sqrt{y}}{2} d y}\right)}}$$
定数倍の法則 $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$ を、$$$c=\frac{1}{2}$$$ と $$$f{\left(y \right)} = \sqrt{y}$$$ に対して適用する:
$$\int{\frac{1}{2 \sqrt{y}} d y} + {\color{red}{\int{\frac{\sqrt{y}}{2} d y}}} = \int{\frac{1}{2 \sqrt{y}} d y} + {\color{red}{\left(\frac{\int{\sqrt{y} d y}}{2}\right)}}$$
$$$n=\frac{1}{2}$$$ を用いて、べき乗の法則 $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:
$$\int{\frac{1}{2 \sqrt{y}} d y} + \frac{{\color{red}{\int{\sqrt{y} d y}}}}{2}=\int{\frac{1}{2 \sqrt{y}} d y} + \frac{{\color{red}{\int{y^{\frac{1}{2}} d y}}}}{2}=\int{\frac{1}{2 \sqrt{y}} d y} + \frac{{\color{red}{\frac{y^{\frac{1}{2} + 1}}{\frac{1}{2} + 1}}}}{2}=\int{\frac{1}{2 \sqrt{y}} d y} + \frac{{\color{red}{\left(\frac{2 y^{\frac{3}{2}}}{3}\right)}}}{2}$$
定数倍の法則 $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$ を、$$$c=\frac{1}{2}$$$ と $$$f{\left(y \right)} = \frac{1}{\sqrt{y}}$$$ に対して適用する:
$$\frac{y^{\frac{3}{2}}}{3} + {\color{red}{\int{\frac{1}{2 \sqrt{y}} d y}}} = \frac{y^{\frac{3}{2}}}{3} + {\color{red}{\left(\frac{\int{\frac{1}{\sqrt{y}} d y}}{2}\right)}}$$
$$$n=- \frac{1}{2}$$$ を用いて、べき乗の法則 $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:
$$\frac{y^{\frac{3}{2}}}{3} + \frac{{\color{red}{\int{\frac{1}{\sqrt{y}} d y}}}}{2}=\frac{y^{\frac{3}{2}}}{3} + \frac{{\color{red}{\int{y^{- \frac{1}{2}} d y}}}}{2}=\frac{y^{\frac{3}{2}}}{3} + \frac{{\color{red}{\frac{y^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1}}}}{2}=\frac{y^{\frac{3}{2}}}{3} + \frac{{\color{red}{\left(2 y^{\frac{1}{2}}\right)}}}{2}=\frac{y^{\frac{3}{2}}}{3} + \frac{{\color{red}{\left(2 \sqrt{y}\right)}}}{2}$$
したがって、
$$\int{\left(\frac{\sqrt{y}}{2} + \frac{1}{2 \sqrt{y}}\right)d y} = \frac{y^{\frac{3}{2}}}{3} + \sqrt{y}$$
簡単化せよ:
$$\int{\left(\frac{\sqrt{y}}{2} + \frac{1}{2 \sqrt{y}}\right)d y} = \frac{\sqrt{y} \left(y + 3\right)}{3}$$
積分定数を加える:
$$\int{\left(\frac{\sqrt{y}}{2} + \frac{1}{2 \sqrt{y}}\right)d y} = \frac{\sqrt{y} \left(y + 3\right)}{3}+C$$
解答
$$$\int \left(\frac{\sqrt{y}}{2} + \frac{1}{2 \sqrt{y}}\right)\, dy = \frac{\sqrt{y} \left(y + 3\right)}{3} + C$$$A