$$$\sec^{2}{\left(u \right)}$$$の積分
入力内容
$$$\int \sec^{2}{\left(u \right)}\, du$$$ を求めよ。
解答
$$$\sec^{2}{\left(u \right)}$$$ の不定積分は $$$\int{\sec^{2}{\left(u \right)} d u} = \tan{\left(u \right)}$$$ です:
$${\color{red}{\int{\sec^{2}{\left(u \right)} d u}}} = {\color{red}{\tan{\left(u \right)}}}$$
したがって、
$$\int{\sec^{2}{\left(u \right)} d u} = \tan{\left(u \right)}$$
積分定数を加える:
$$\int{\sec^{2}{\left(u \right)} d u} = \tan{\left(u \right)}+C$$
解答
$$$\int \sec^{2}{\left(u \right)}\, du = \tan{\left(u \right)} + C$$$A
Please try a new game Rotatly