$$$\frac{\pi \cos{\left(x \right)}}{2 \sqrt{\sin{\left(x \right)}}}$$$の積分

この計算機は、手順を示しながら$$$\frac{\pi \cos{\left(x \right)}}{2 \sqrt{\sin{\left(x \right)}}}$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \frac{\pi \cos{\left(x \right)}}{2 \sqrt{\sin{\left(x \right)}}}\, dx$$$ を求めよ。

解答

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{\pi}{2}$$$$$$f{\left(x \right)} = \frac{\cos{\left(x \right)}}{\sqrt{\sin{\left(x \right)}}}$$$ に対して適用する:

$${\color{red}{\int{\frac{\pi \cos{\left(x \right)}}{2 \sqrt{\sin{\left(x \right)}}} d x}}} = {\color{red}{\left(\frac{\pi \int{\frac{\cos{\left(x \right)}}{\sqrt{\sin{\left(x \right)}}} d x}}{2}\right)}}$$

$$$u=\sin{\left(x \right)}$$$ とする。

すると $$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$(手順は»で確認できます)、$$$\cos{\left(x \right)} dx = du$$$ となります。

したがって、

$$\frac{\pi {\color{red}{\int{\frac{\cos{\left(x \right)}}{\sqrt{\sin{\left(x \right)}}} d x}}}}{2} = \frac{\pi {\color{red}{\int{\frac{1}{\sqrt{u}} d u}}}}{2}$$

$$$n=- \frac{1}{2}$$$ を用いて、べき乗の法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:

$$\frac{\pi {\color{red}{\int{\frac{1}{\sqrt{u}} d u}}}}{2}=\frac{\pi {\color{red}{\int{u^{- \frac{1}{2}} d u}}}}{2}=\frac{\pi {\color{red}{\frac{u^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1}}}}{2}=\frac{\pi {\color{red}{\left(2 u^{\frac{1}{2}}\right)}}}{2}=\frac{\pi {\color{red}{\left(2 \sqrt{u}\right)}}}{2}$$

次のことを思い出してください $$$u=\sin{\left(x \right)}$$$:

$$\pi \sqrt{{\color{red}{u}}} = \pi \sqrt{{\color{red}{\sin{\left(x \right)}}}}$$

したがって、

$$\int{\frac{\pi \cos{\left(x \right)}}{2 \sqrt{\sin{\left(x \right)}}} d x} = \pi \sqrt{\sin{\left(x \right)}}$$

積分定数を加える:

$$\int{\frac{\pi \cos{\left(x \right)}}{2 \sqrt{\sin{\left(x \right)}}} d x} = \pi \sqrt{\sin{\left(x \right)}}+C$$

解答

$$$\int \frac{\pi \cos{\left(x \right)}}{2 \sqrt{\sin{\left(x \right)}}}\, dx = \pi \sqrt{\sin{\left(x \right)}} + C$$$A


Please try a new game Rotatly