$$$\omega t \cos{\left(2 \right)}$$$$$$t$$$ に関する積分

この計算機は、$$$t$$$ に関して $$$\omega t \cos{\left(2 \right)}$$$ の積分/原始関数を、手順を示しながら求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \omega t \cos{\left(2 \right)}\, dt$$$ を求めよ。

三角関数は引数をラジアンで解釈します。引数を度で入力するには、pi/180 を掛けてください。例えば 45° は 45*pi/180 と書きます。あるいは末尾に 'd' を付けた対応する関数を使います。例えば sin(45°) は sind(45) と書きます。

解答

定数倍の法則 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ を、$$$c=\omega \cos{\left(2 \right)}$$$$$$f{\left(t \right)} = t$$$ に対して適用する:

$${\color{red}{\int{\omega t \cos{\left(2 \right)} d t}}} = {\color{red}{\omega \cos{\left(2 \right)} \int{t d t}}}$$

$$$n=1$$$ を用いて、べき乗の法則 $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:

$$\omega \cos{\left(2 \right)} {\color{red}{\int{t d t}}}=\omega \cos{\left(2 \right)} {\color{red}{\frac{t^{1 + 1}}{1 + 1}}}=\omega \cos{\left(2 \right)} {\color{red}{\left(\frac{t^{2}}{2}\right)}}$$

したがって、

$$\int{\omega t \cos{\left(2 \right)} d t} = \frac{\omega t^{2} \cos{\left(2 \right)}}{2}$$

積分定数を加える:

$$\int{\omega t \cos{\left(2 \right)} d t} = \frac{\omega t^{2} \cos{\left(2 \right)}}{2}+C$$

解答

$$$\int \omega t \cos{\left(2 \right)}\, dt = \frac{\omega t^{2} \cos{\left(2 \right)}}{2} + C$$$A


Please try a new game Rotatly