$$$n^{x}$$$ の $$$x$$$ に関する積分
入力内容
$$$\int n^{x}\, dx$$$ を求めよ。
解答
Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=n$$$:
$${\color{red}{\int{n^{x} d x}}} = {\color{red}{\frac{n^{x}}{\ln{\left(n \right)}}}}$$
したがって、
$$\int{n^{x} d x} = \frac{n^{x}}{\ln{\left(n \right)}}$$
積分定数を加える:
$$\int{n^{x} d x} = \frac{n^{x}}{\ln{\left(n \right)}}+C$$
解答
$$$\int n^{x}\, dx = \frac{n^{x}}{\ln\left(n\right)} + C$$$A
Please try a new game Rotatly